
www.manaraa.com

University of Iowa University of Iowa 

Iowa Research Online Iowa Research Online 

Theses and Dissertations 

Summer 2012 

Pointwise identification for thin shell structures and verification Pointwise identification for thin shell structures and verification 

using realistic cerebral aneurysms using realistic cerebral aneurysms 

Shouhua Hu 
University of Iowa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Mechanical Engineering Commons 

Copyright © 2012 Shouhua Hu 

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/3313 

Recommended Citation Recommended Citation 
Hu, Shouhua. "Pointwise identification for thin shell structures and verification using realistic cerebral 
aneurysms." PhD (Doctor of Philosophy) thesis, University of Iowa, 2012. 
https://doi.org/10.17077/etd.hwfc6uh8 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Mechanical Engineering Commons 

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F3313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.hwfc6uh8
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F3313&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

POINTWISE IDENTIFICATION FOR THIN SHELL STRUCTURES AND

VERIFICATION USING REALISTIC CEREBRAL ANEURYSMS

by

Shouhua Hu

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

July 2012

Thesis Supervisor: Associate Professor Jia Lu



www.manaraa.com

1

ABSTRACT

Identification of material properties for elastic materials is important in me-

chanics, material sciences, mechanical engineering and biomedical engineering. Al-

though the principle and techniques have been long established, the application in

living biology still faces challenges. The biological materials are in general nonlinear,

anisotropic, heterogeneous, and subject-specific. The difficulty is compounded some-

times by the requirement of non-destructiveness in medical applications. Recently,

the pointwise identification method (PWIM) was proposed to address some of the

needs of soft tissue characterization. PWIM is a non-invasive identification method,

designed for thin materials; it can sharply characterize arbitrary heterogeneous prop-

erty distributions.

The primary goal of this thesis is to extend the pointwise identification method

, originally developed for membranes which by default is of convex shape in pressurized

states, to thin structures of arbitrary geometry. This work consists of four parts. The

first part investigates the insensitivity of stress solution to material parameters in thin

shell structures. This is an important first step, because PWIM hinges on the static

determinacy property of the equilibrium problem of membranes. Before introducing

the shell element into PWIM, it is necessary to test to what extent the assumption

of static determinacy remains reasonable. It is shown that saccular structure which

bending stress is small compared to in-plane stress, can still be treated as a statically

determined structure.

The second part focuses on developing finite element formulations of forward
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and inverse shell methods for a hyperelastic material model specifically proposed for

cerebral aneuryms tissues. This is a preparatory step for the core development.

The third part is the development of pointwise identification method for thin

shell structures. Methods for stress solution, strain acquisition, and parameter regres-

sion will be discussed in detail. The entire process is demonstrated using an example

of a geometrically realistic model of aneurysm.

The fourth part is testing the applicability on geometrically realistic cerebral

aneurysms. Six models were selected in the study; the emphasis is placed on cerebral

aneurysm with concave or saddle surface region for which the use of shell theory is

a must. The identification results of all six human cerebral aneurysms successfully

demonstrate that the shell PWIM can be applied to realistic cerebral aneurysms.

Four types of heterogeneous property distributions are considered in the study. It is

found that the method can accurately back out the property distributions in all cases.

Fiber directions can also be accurately estimated. The robustness of the method at

the presentence of numerical noise is also investigated. It is shown that the shell

PWIM still works when small perturbations exist in displacements.
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The second part focuses on developing finite element formulations of forward

and inverse shell methods for a hyperelastic material model specifically proposed for

cerebral aneuryms tissues. This is a preparatory step for the core development.

The third part is the development of pointwise identification method for thin

shell structures. Methods for stress solution, strain acquisition, and parameter regres-

sion will be discussed in detail. The entire process is demonstrated using an example

of a geometrically realistic model of aneurysm.

The fourth part is testing the applicability on geometrically realistic cerebral

aneurysms. Six models were selected in the study; the emphasis is placed on cerebral

aneurysm with concave or saddle surface region for which the use of shell theory is

a must. The identification results of all six human cerebral aneurysms successfully

demonstrate that the shell PWIM can be applied to realistic cerebral aneurysms.

Four types of heterogeneous property distributions are considered in the study. It is

found that the method can accurately back out the property distributions in all cases.

Fiber directions can also be accurately estimated. The robustness of the method at

the presentence of numerical noise is also investigated. It is shown that the shell

PWIM still works when small perturbations exist in displacements.

iv



www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Regression-based methods . . . . . . . . . . . . . . . . . . 2
1.2.2 Optimization-based methods . . . . . . . . . . . . . . . . 4
1.2.3 Inverse studies in cerebral aneurysms . . . . . . . . . . . 6
1.2.4 Pointwise Identification Method . . . . . . . . . . . . . . 7

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . 12

2.1 Membrane theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Constitutive relations . . . . . . . . . . . . . . . . . . . . 16

2.2 Shell theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Inverse elastostatic method . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Inverse shell formulations . . . . . . . . . . . . . . . . . . 27

2.4 Pointwise identification method (PWIM) . . . . . . . . . . . . . 28
2.4.1 Stress acquisition . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Stain acquisition and computation . . . . . . . . . . . . . 30
2.4.3 Parameter identification . . . . . . . . . . . . . . . . . . . 30

3 SENSITIVITY OF STRESS TO MATERIAL MODEL IN INVERSE
& FORWARD ANALYSIS OF THIN STRUCTURES . . . . . . . . . 32

3.1 Tubular geometry - AAA . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 FEA models shell . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Material model . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



www.manaraa.com

3.1.3.1 Juvenile AAA . . . . . . . . . . . . . . . . . . . 34
3.1.3.2 Full grown AAA . . . . . . . . . . . . . . . . . . 42

3.1.4 Bending effects on material sensitivity . . . . . . . . . . . 49
3.2 Saccular geometries - 26 human cerebral aneurysms . . . . . . . 56

3.2.1 Stress results . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Stress sensitivity study . . . . . . . . . . . . . . . . . . . 58

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1 Stress insensitivity study . . . . . . . . . . . . . . . . . . 64
3.3.2 Implications of inverse analysis for AAA . . . . . . . . . . 73

4 IMPLEMENTATION OF A CEREBRAL ANEURYSM TISSUE MODEL
IN FORWARD AND INVERSE SHELL ELEMENT . . . . . . . . . . 76

4.1 Holzapfel model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Forward stress function . . . . . . . . . . . . . . . . . . . 78
4.2.2 Inverse stress function . . . . . . . . . . . . . . . . . . . . 80

4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Forward-inverse loop . . . . . . . . . . . . . . . . . . . . . 81

4.3.1.1 Example: pressurized hemisphere . . . . . . . . 82
4.3.1.2 Example: bending plate . . . . . . . . . . . . . . 84

4.3.2 Stress solution . . . . . . . . . . . . . . . . . . . . . . . . 85

5 POINTWISE IDENTIFICATION METHOD FOR SHELL STRUC-
TURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Pointwise identification method for shell structure . . . . . . . . 86
5.2 Demonstration of the method using an aneurysm model . . . . . 88

5.2.1 Material heterogeneity . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Strain field . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Stress field . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.4 Constitutive regression . . . . . . . . . . . . . . . . . . . 95
5.2.5 Stress insensitivity of inverse stress . . . . . . . . . . . . . 97
5.2.6 Distribution of the identified parameters . . . . . . . . . . 99
5.2.7 Forward predictability validation . . . . . . . . . . . . . . 101

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 APPLICABILITY OF PWIM IN CEREBRAL ANEURYSMS . . . . 104

6.1 The applicability study . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.2 Pointwise identification results . . . . . . . . . . . . . . . 106

6.2 Unknown fiber direction . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.1 Identification results . . . . . . . . . . . . . . . . . . . . . 112

vi



www.manaraa.com

6.2.2 Predictability of the identified parameters . . . . . . . . . 115
6.3 Influence of noise in motion data . . . . . . . . . . . . . . . . . . 115

6.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 Identification results . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Predictability of the identified parameters . . . . . . . . . 125

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vii



www.manaraa.com

LIST OF TABLES

Table

3.1 Maximum stress and mean stress of four material models. . . . . . . . . 41

3.2 Percentage differences of maximum stress and mean stress relative to ref-
erence material model using the forward and inverse methods. . . . . . . 42

3.3 Statistics of the percentage differences (%) by using forward and inverse
method, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Maximum stress and mean stress of four material models. . . . . . . . . 48

3.5 Percentage differences of maximum stress and mean stress relative to ref-
erence material model using the forward and inverse methods. . . . . . . 48

3.6 Statistics of the percentage differences (%) by using forward and inverse
method, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Statistics of the percentage differences (%) in the juvenile AAA by using
forward and inverse method, respectively. . . . . . . . . . . . . . . . . . . 52

3.8 Statistics of the percentage differences (%) in the full grown AAA by using
forward and inverse method, respectively. . . . . . . . . . . . . . . . . . . 52

4.1 Nodal coordinate in initial configuration R and stress-free configuration
R′ predicted by inverse method. . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Convected and non-convected base vectors in three configurations. . . . . 94

5.2 Maximum, minimum and mean errors of the identified parameters in the
identification region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Statistics of the identification errors (%) of five cases. . . . . . . . . . . . 112

viii



www.manaraa.com

LIST OF FIGURES

Figure

2.1 Schematic illustration of the kinematic map. . . . . . . . . . . . . . . . . 13

2.2 Illustration of shell deformation. . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Basic procedure of PWIM. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Deformed shape (mesh) vs. in vivo shape (shaded) using conventional
forward shell method: (a) Fung’s model with baseline material parameters;
(b) neo-Hookean model with baseline material parameters. . . . . . . . 35

3.2 Initial (Stress free) shape (mesh) vs. in vivo shape (shaded) using inverse
shell method: (a) Fung’s model with baseline material parameters; (b)
neo-Hookean model with baseline material parameters. . . . . . . . . . . 36

3.3 Comparison of von Mises stress predicted using the Fung family. First
row: forward method. (a) Baseline; (b) Stiffer; (c) Percentage differences.
Second row: inverse method. (d) Baseline; (e) Stiffer; (f) Percentage
differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Comparison of von Mises stress predicted using the neo-Hookean fam-
ily. First row: forward method. (a) Baseline; (b) Stiffer; (c) Percentage
differences. Second row: inverse method. (d) Baseline; (e) Stiffer; (f)
Percentage differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Percentage stress differences between the baseline Fung model and the
baseline neo-Hookean model by using forward and inverse method, re-
spectively: (a) forward method; (b) inverse method. . . . . . . . . . . . 41

3.6 Deformed shape (mesh) vs. in vivo shape (shaded) using forward shell
method: (a) Fung’s model with baseline material parameters; (b) neo-
Hookean model with baseline material parameters. . . . . . . . . . . . . 43

3.7 Initial (Stress free) shape (mesh) vs. in vivo shape (shaded) using inverse
shell method: (a) Fung’s model with baseline material parameters; (b)
neo-Hookean model with baseline material parameters. . . . . . . . . . . 44

ix



www.manaraa.com

3.8 Von Mises stress results using the Fung models. First row: forward
method. (a) Baseline; (b) Stiffer; (c) Percentage difference. Second row:
forward method. (d) Baseline; (e) Stiffer; (f) Percentage difference. . . . 45

3.9 Von Mises stress results using the neo-Hookean models. First row: forward
method. (a) Baseline; (b) Stiffer; (c) Percentage difference. Second row:
forward method. (d) Baseline; (e) Stiffer; (f) Percentage difference. . . . 46

3.10 Percentage stress differences between the baseline Fung model and the
baseline neo-Hookean model by using forward and inverse method respec-
tively: (a) forward method; (b) inverse method. . . . . . . . . . . . . . . 47

3.11 Bending factor distribution of the baseline Fung model: (a) juvenile AAA
model; (b) full grown AAA model. . . . . . . . . . . . . . . . . . . . . . 50

3.12 Percentage stress differences between of the juvenile AAA by using for-
ward and inverse method respectively: (a) & (b) stress differences between
baseline Fung with stiffer Fung material model; (c) & (d) stress differences
between baseline neo-Hookean with stiffer neo-Hookean material model;
(e) & (f) stress differences between baseline Fung model with baseline
neo-Hookean model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Percentage stress differences between of the full grown AAA by using for-
ward and inverse method respectively: (a) & (b) stress differences between
baseline Fung with stiffer Fung material model; (c) & (d) stress differences
between baseline neo-Hookean with stiffer neo-Hookean material model;
(e) & (f) stress differences between baseline Fung model with baseline
neo-Hookean model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Bending factor-von Mises stress differences in the juvenile AAA using in-
verse method: (a) Fung material model; (b) neo-Hookean material model. 54

3.15 Bending factor-von Mises stress differences in the Full grown AAA us-
ing inverse method: (a) Fung material model; (b) neo-Hookean material
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 “Edge” points locations: (a) juvenile AAA; (b) full grown AAA. . . . . 56

3.17 First principal stress distributions, part I. Upper row: the stress result
computed by forward method; lower row: the stress result computed by
inverse method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



www.manaraa.com

3.18 First principal stress distributions, part II. Upper row: the stress result
computed by forward method; lower row: the stress result computed by
inverse method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.19 First principal stress distributions, part III. Upper row: the stress result
computed by forward method; lower row: the stress result computed by
inverse method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.20 First principal stress distributions, part IV . Upper row: the stress result
computed by forward method; lower row: the stress result computed by
inverse method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.21 First principal stress distributions, part V . Upper row: the stress result
computed by forward method; lower row: the stress result computed by
inverse method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.22 The comparison of 95% of the maximum first principal stress between
forward and inverse method, respectively. . . . . . . . . . . . . . . . . . 63

3.23 First principal stress differences by using forward and inverse method,
respectively, part I. Upper row: the stress result computed by forward
method; lower row: the stress result computed by inverse method. . . . 65

3.24 First principal stress differences by using forward and inverse method,
respectively, part II. Upper row: the stress result computed by forward
method; lower row: the stress result computed by inverse method. . . . 66

3.25 First principal stress differences by using forward and inverse method,
respectively, part III. Upper row: the stress result computed by forward
method; lower row: the stress result computed by inverse method. . . . 67

3.26 First principal stress differences by using forward and inverse method,
respectively, part IV . Upper row: the stress result computed by forward
method; lower row: the stress result computed by inverse method. . . . 68

3.27 First principal stress differences by using forward and inverse method,
respectively, part V . Upper row: the stress result computed by forward
method; lower row: the stress result computed by inverse method. . . . 69

3.28 Stress sensitivity in inverse and forward analysis. . . . . . . . . . . . . . 69

3.29 Bending factors in 26 patient-specific cerebral aneurysms, part I. . . . . 70

3.30 Bending factors in 26 patient-specific cerebral aneurysms, part II. . . . . 71

xi



www.manaraa.com

3.31 Bending factors in 26 patient-specific cerebral aneurysms, part III. . . . 72

4.1 Schematic illustration of uniformly distributed collagen fibers (Reproduced
from [42]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Prediction of inverse method. . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Prediction of inverse method. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Stress distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Flowchart of the pointwise identification procedure for shell structure. . . 87

5.2 Flowchart of the numerical verification. . . . . . . . . . . . . . . . . . . . 89

5.3 Assumed stiffness parameter distribution: (a) E1; (b) E2. . . . . . . . . 90

5.4 Distribution of the first and second principal stretches at p = 100 mmHg
pressure: (a) λ2; (b) λ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Distribution of the first and second principal stresses at p = 100 mmHg
pressure: (a) pm1(N/mm

2); (b) pm2(N/mm
2). . . . . . . . . . . . . . . 92

5.6 Percentage difference in von Mises stress between baseline and stiffer 8-
fiber Holzapfel material models. . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Distribution of bending factor α. . . . . . . . . . . . . . . . . . . . . . . 99

5.8 PWIM result for CASE I. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Distribution of displacement differences between two sets of material pa-
rameters’ analysis (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Von Mises stress (N/mm2) and bending factors. . . . . . . . . . . . . . 105

6.2 PWIM result for CASE II. (The maximum strain is 0.06). . . . . . . . . 107

6.3 PWIM result for CASE III. (The maximum strain is 0.06). . . . . . . . 108

6.4 PWIM result for CASE IV. (The maximum strain is 0.09). . . . . . . . 109

6.5 PWIM result for CASE V. (The maximum strain is 0.05). . . . . . . . . 110

6.6 PWIM result for CASE VI. (The maximum strain is 0.07). . . . . . . . 111

xii



www.manaraa.com

6.7 Schematic illustration of uniformly distributed collagen fibers (Reproduced
from [42]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 PWIM result for CASE III without knowing the first fiber direction. . . 116

6.9 PWIM result for CASE V without knowing the first fiber direction. . . 117

6.10 Fiber direction (N1) on Gauss points (red dots), CASE III. Red line:
identified fiber direction; Blue line: assumed fiber direction. . . . . . . . 118

6.11 Fiber direction (N1) on Gauss points (red dots), CASE V. Red line: iden-
tified fiber direction; Blue line: assumed fiber direction. . . . . . . . . . . 119

6.12 Percentage difference in nodal displacement, CASE III. . . . . . . . . . . 120

6.13 Percentage difference in nodal displacement, CASE V. . . . . . . . . . . 120

6.14 Method to evaluate the stability of PWIM. . . . . . . . . . . . . . . . . . 121

6.15 Identification result for CASE II under 1% of perturbation. . . . . . . . 123

6.16 Identification result for CASE II under 2% of perturbation. . . . . . . . 124

6.17 Percentage difference in displacement under 1% perturbation. . . . . . . 125

6.18 Percentage difference in displacement under 2% perturbation. . . . . . . 126

6.19 Errors in strain and stress data. . . . . . . . . . . . . . . . . . . . . . . 126

xiii



www.manaraa.com

1

CHAPTER 1
INTRODUCTION

1.1 Motivation

Biomechanics seeks to understand the mechanics of living systems. For biomed-

ical applications, biomechanics helps us understand the function of organs under nor-

mal and pathological conditions as well as medical intervention procedures [15, 16].

Stress analysis is an important field in biomechanical and biomedical engineering;

the field has advanced significantly in the past few decades, and new techniques such

as imaged-based analyses are gradually becoming the state of art. For example,

patient-specific vascular aneurysm model are used for in vivo wall stress analysis and

rupture risk estimation [52, 77, 51, 102]. However, obtaining the material property

of biological material properties remains a difficulty task.

An accurate characterization of the elastic behavior of biological soft tissues

requires one to determine suitable constitutive relations and identify corresponding

constitutive parameters. This is usually realized by conducting designed experiments

and examining the stress-strain relations. As soon as a constitutive model is selected,

the model parameters can be identified from the experimental stress-stain data. Al-

though in principle methods of material testing are well known, the applications in

soft tissue faces considerable challenges. Among other reasons, soft tissues are in

general heterogeneous, anisotropic, nonlinear, and subject-specific. Heterogeneity in

particular requires delineating property distributions, a capability most existing do
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not have. Scholars have developed many approaches to identify the elastic proper-

ties of the materials. The existing methods may be categorized into regression-based

and optimization-based methods. These methods have their own advantages and

shortcomings. In the soft tissue extension or compression experiments, in order to

characterize the material heterogeneity, the testing specimen has to be cut into quite

small, which is difficult if not impossible to operate. In addition, the experimental

specimen testing method is not suitable for characterizing the material properties in

the living conditions. The optimization-based methods are non-invasive and suitable

to identify the material properties of the living soft tissues. This family of methods

can only characterize the homogeneous material properties in a small domain, not

exactly can characterize the material heterogeneities.

1.2 Literature review

As mentioned earlier, existing methods for characterizing material properties

of soft tissues may be divided into two categories: regression-based methods, and

optimization-based methods. Below, we will briefly review the major contributions

in each of the categories and prior scholarships in the area of cerebral aneurysm

property identification.

1.2.1 Regression-based methods

The regression-base methods refer to method that characterize the material

properties from strain-stress data. A pre-requisite of these methods is the availability

of such data. The simplest and most straightforward method is specimen testing
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[44, 45, 59, 75]. From the strain-stress data obtained by these experimental tests,

researcher first select an appropriate constitutive model, and then conduct the con-

stitutive regression to identify the parameters which best fit the strain-stress data.

The earliest study using the specimen testing method to characterize the material

properties of rabbit skin was conducted by Lanir and Fung [44, 45]. Afterwards,

enormous studies were reported on experimental testing the tissues’ material proper-

ties in different types of organs; and at the same time, many constitutive equations

were proposed to describe the large deformation feature for soft tissue. For exam-

ple, Hoppin et al. [35] used the triaxial loading experiments to study the material

properties of lung tissue. Farshad et al. [11] investigated the material behavior of pig

kidney and advised a non-linear theoretical simulation based on the two parameter

Blatz model. Davies et al. [7] developed a biomechanical model which described the

incompressible, homogeneous, isotropic nonlinear elastic material with an exponential

stress-strain law for abdominal (spleen) tissue. The specimen testing is used broadly

in characterizing the material properties in soft tissue; however the method has some

limitations. First and foremost, the method is destructive. Although recently re-

searchers developed instrumentations [30, 29, 31, 76] for testing the soft tissue in

vivo, the procedure is still somehow destructive. Second, the specimen testing meth-

ods can only provide the average properties of the testing tissue. Usually, the material

properties in the soft tissues are heterogeneous. In order to identify the heterogenous

material properties, the testing tissue must be cut into quite small pieces, which

increases the difficulties of the experiments.
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Another method for feature hyperelastic material characterization is the ax-

isymmetric membrane inflation test [14, 92, 63, 86]. The inflation method was first

used by Treloar [79, 80, 81] to study the hyperelastic material properties in the

isotropic rubbers. Wineman et al. [89] applied the axisymmetric membrane infla-

tion test on soft tissue and determined the strain energy density function for the

specimen. Hsu et. al [28, 27, 26] developed a experimental system to perform the

axisymmetric membrane inflation test on biomembranes, and then applied this exper-

iment to investigate the nonlinear material properties on saccular aneurysms. This

method inflates an axisymmetric membrane structure into several deformed config-

urations. The stain data can be measured experimentally. Base on the membrane

assumption and axisymmetric geometry, the stress distribution along the meridian

can be calculated by the analytical formula. With the strain-stress data, the material

properties can be identified through constitutive regression. The axisymmetric mem-

brane inflation methods, though being able to delineate stress-strain relation directly

from experimental data and providing pointwise material properties’ distributions

along the meridian, are limited to axisymmetric geometry, not applicable to systems

of other geometries.

1.2.2 Optimization-based methods

Optimization-based methods (also called inverse finite element method) are

broadly used in characterizing the material properties of living organs because of its

non-destructive feature [37, 34, 2]. In optimization-based methods, material param-
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eter identification is often carried out by iterating between stress analysis (using e.g.

finite element analysis) and optimization techniques to estimate the model param-

eters. The model parameters are typically optimized altogether by minimizing the

difference between experimental and simulated data of displacement or force, etc.

Kyriacou et al. coined the term “inverse finite element method” , which is an opti-

mization method using finite element method to solve boundary value problems. They

[43] presented the numerical and experimental results and showed the inverse finite

element method was very useful by the rubber membranes. Kauer et al. [36] pre-

sented a soft tissue characterization method which was validated through experiments

on synthetic materials and was applied on human uteri. Liu et al. [46] used inverse

finite element modeling method to determine the material parameters of breast tissue

from indentation experiments. Kim et al. [38] characterized the material properties

of intra-abdominal organs using in vivo animal experimental data and inverse FE

parameter estimation algorithm. Erdemir et al. [9] used a numerical-experimental

approach to characterize material properties of heel-pad. Samur et al. [62] used

ANSYS finite element package to estimate the optimum values of viscoelastic and

nonlinear hyperelastic material properties of pig liver.

These methods couple stress-strain data acquisition and optimization, so they

are limited by the size of the optimization problem, namely the number of parameters

in the model. When the number is large, the optimization solution is not robust

due to the presence of local minima. In addition, the coupled iteration between

finite element analysis and optimization makes it difficult to locate the root of the
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identification error.

1.2.3 Inverse studies in cerebral aneurysms

In the study of material properties in cerebral aneurysms, in order to best fit

the experimental data, different kinds of material models were proposed to described

the nonlinear, anisotropic, collagen fibers feature in soft tissues [64, 21, 74, 78]. For

example, Canham et al. [5] constructed a mathematical model base on autopsy

specimens in the laboratory to study the mechanics of saccular aneurysms; and later

in [6] presented that the cerebral aneurysm wall contained many, very thin sub-layers.

Holzapfel and Kroon [40, 42] proposed a new constitutive model to described the

multi-layered collagenous structures in cerebral aneurysms.

Seshaiyer and Humphery et al. are the only group who did experimental

work on harvested human tissues. They first developed the “inverse finite element

method” to characterize the material properties in rubber membranes. This non-

invasive optimization-based methods are broadly used in characterizing the material

properties in cerebral aneurysms. This kind of method came with shortcomings,

especially in characterizing the heterogeneous material properties. As a remedy to the

global optimization, in [65, 66], they developed a sub-domain inverse finite element

method where the optimization problem is formulated regionally not globally. In

[65], Seshaiyer et al. determined the mechanical properties of human intracranial

saccular aneurysm and estimate the material parameters in a Fung-type material

model. The material heterogeneity they defined only contained 2-3 sets of different
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material parameters. Because of the optimization based approach, this method can

not identify the constitutive response directly from strain-stress data.

Holzapfel and Kroon [41] described an inverse finite element procedure of de-

termining properties and used a numerical simulation on saccular cerebral aneurysm

(sphere geometry) to verify their method. The nonlinear constitutive model contains

four heterogenous material parameters (two elastic stiffness of the collagen fabric in

two principal direction, one angle parameter defined the fiber orientation, and one

constant parameter described the fiber nonlinearity). This is the first investigation

to predict the distribution of anisotropic material properties in cerebral aneurysms.

However, this approach is also a optimization-based method.

Balocco et al. [3, 4] investigated the feasibility of characterizing the regional

mechanical properties of cerebral aneurysm in vivo. This is a comprehensive study

despite that the material model is simple (isotropic material). They generated MR

images from FEM, and used image segmentation to derive the moving mesh in the wall

motions. They concluded that the current image resolution is insufficient for inverse

characterization of cerebral aneurysm tissue properties, even for simple heterogenous

distribution.

1.2.4 Pointwise Identification Method

Recently, the pointwise identification method (PWIM) has been proposed [47,

96, 98, 97]. This is a regression-based method. However, unlike the specimen test

which essentially works on a material point, the method works simultaneously on
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many material points in parallel, and thus can sharply identify the distribution of

heterogeneous properties.

PWIM is a generalization of the membrane inflation test. Traditional inflation

test is for axisymmetric structures; for such structures the stress in the wall can

be obtained analytically using the Laplace formula. In contrast, PWIM applies to

membrane structure without any geometric symmetry. The method is certainly a step

forward toward application in realist thin tissue structures. This method exploits the

static determinant property in membrane structure to obtain the stress data through

inverse method [48, 49]. In PWIM, instead of using an analytical solution, the stress

is computed numerically using the membrane inverse method [49], a subclass of the

finite element inverse elastostatic method (FEIEMs) [19, 90, 91, 49]. The inverse

approach can effectively predict the wall stress using the assumed material models.

The PWIM is non-destructive, and can identify the heterogenous material because

of its pointwise feature. It decouples stress-strain data acquisition and constitutive

regression, thus can identify the material properties in arbitrary distribution.

The pointwise identification method, although very promising, has a limitation

related to the membrane assumption. The inverse membrane simulation in [49] as-

sumed that the thin wall structure is a thin convex or saddle membrane that does not

sustain bending and transverse shear. This assumption is inadequate for thin struc-

tures with concave geometries. The membrane assumption precludes the application

to a large family of realistic structures.
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1.3 Objectives

The objective of this study is to extend PWIM to membrane structures that

have concave or saddle regions and to investigate the applicability of the method in

such structures. The study can be divided into four tasks.

The first task is to investigate the insensitivity of wall stress to the material

model in thin shell structures. This is an important first step, because the PWIM

hinges on the static determinacy property of the equilibrium problem of thin structure.

By thinness, the material is locally in a 2D stress state and therefore may be deter-

mined from static equilibrium alone. If substantial bending moment and transverse

shear are required to achieve equilibrium, static determinacy is lost and the method

may not apply. However, in between the membrane structure and thick shells there

should be a family of thin shells which should be regarded approximately statically

determined. This happens when the bending moment and transverse shear are much

smaller compare to the in-plane stress. The question then is that, to what extend

the property of static determinacy remains a reasonable approximation, and how do

we quantify it. In this work, we first look at tubular versus saccular structures using

examples of abdominal aortic aneurysms (AAAs) and cerebral aneurysms. We con-

duct sensitivity analysis numerically by comparing the stress solutions from different

material models. To quantify the influence of bending, the bending stresses are also

compared with the stress differences. Through the comparison of bending stress and

stress insensitivity between tubular and saccular structures, we will find a geometry

which can keep lower bending stress and better stress insensitivity character.
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The second task is to establish the shell structure pointwise identification

method. Algorithmic details of the three components of the method, namely stress

analysis, strain analysis, and parameter regression, will be presented in detail. This

task also include the implementation of a hyperelastic material body for cerebral

aneurysm tissues in a forward and an inverse shell element. The 8-fiber Holzapfel

material model is used to described the cerebral aneurysm wall tissue. The material

model will be later used in cerebral aneurysm analysis.

The third task is to evaluate the shell PWIM numerically on cerebral aneurysm

models of concave of saddle surfaces. We will use numerically generated inflation data

to drive the inverse analysis to back out the assumed heterogeneous properties in the

aneurysm wall. A group of image derived cerebral aneurysm models will be used

in this study. The surface geometry of which represents typical surface features of

realistic aneurysm. Through this study, we hope to gain a better understanding of

the method and come up with recommendations on the applicability of the method.

The fourth task is to investigate the robustness of the method at the presence

of noise. In real application, the deformed configuration will be constructed from

medical imagines, in which error is inevitable. In this study, the geometric errors will

be introduced numerically and the performance of PWIM will be studied.

1.4 Organization

The thesis proposal is organized as follows. In Chapter 2, the theoretical

background of PWIM is introduced. The formulation for geometrically exact stress
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resultant shell is also described.

In Chapter 3, the stress insensitivity is investigated by using two AAAs models,

and 27 cerebral aneurysm models of realistic geometries. Sensitivity of stress solution

in both forward and inverse analyses are reported.

In Chapter 4, the 8-fiber Holzapfel material model is implemented into the

forward and inverse shell elements. The elements are verified using an forward-inverse

loop in which the forward deformation is fed to the inverse analysis to see if the inverse

solution can exactly revert the deformation. In addition, the inverse formulation is

tested using a problem in which the exact asymptotic stress field is known.

The shell PWIM is discussed in Chapter 5. The method is presented in detail.

This chapter also presents the validation of the shell PWIM using numerical experi-

ments on a realistic cerebral aneurysm model with heterogeneous material properties.

The predictive capability of identified parameters is tested using a forward analysis

at a different load.

Chapter 6 evaluates the applicability of shell PWIM. In this chapter, five typi-

cal cerebral aneurysms are selected and conducted the shell PWIM. The identification

accuracy is demonstrated by comparing the relative error between the assumed and

identified material parameters. The robustness of shell PWIM is investigated in this

chapter. The shell PWIM is applied on a cerebral aneurysm when the deformed con-

figurations are perturbed by random noise. The identified parameters’ accuracy and

predicability will be examined.

Conclusions and the outlook are contained in Chapter 7.
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CHAPTER 2
THEORETICAL BACKGROUND

Identifying the elastic properties in a soft tissue structure has long been a very

challenging problem. Especially the identification which requires to be performed

in the service conditions of living tissues and organs, i.e. in vivo, or identifying

the heterogenous material, presents more challenges. The pointwise identification

method (PWIM) was proposed to identify the elastic properties in the nonlinear

heterogeneous membrane. Fundamentally, this method hinges on the unique feature

of membrane equilibrium problems, that is, the wall stress depends on geometry and

load, not wall material property [49]. In theory, for a sac-like structure under internal

pressure, if the deformed shape is known, the wall stress can be determined from

the deformed geometry and load. This feature is critical for material characterization

because one can obtain stress data without invoking the material property in question.

In PWIM, the stress are computed using the inverse elastostatic method which takes

the deformed configuration as the input. Having stress and strain, the local properties

are determined directly from the pointwise strain-stress data [47, 96]. In this chapter,

the main features of the theoretical background of PWIM are reviewed.

2.1 Membrane theory

2.1.1 Kinematics

A membrane is a thin continuum in which one of the dimensions is significantly

smaller than the other two. There are many ways to present the membrane equations,
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Figure 2.1: Schematic illustration of the kinematic map.

we use tonsorially covariant forms based on convected coordinates. Let X = X(ξ1, ξ2)

and x = x(ξ1, ξ2) be the positions of a material point in the initial (R ∈ R2) and

deformed (C ∈ R2) configurations in Figure 2.1. The surface is parameterized by

surface convected coordinates ξα(α = 1, 2). If we define Gα = ∂X
∂ξα

and gα = ∂x
∂ξα

as

the basis vector in the reference and current configuration, respectively, it is obviously

that

dX = Gαdξ
α, dx = gαdξ

α. (2.1)

Repeated indices means the summation convention.

The deformation gradient F is defined as F = ∂x
∂X

. In the convected coordinate

system, the deformation gradient can be written as

dx = FdX ⇔ gαdξ
α = FGαdξ

α. (2.2)
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Here we focus on the in-plane part of the deformation gradient and thus dx and dX

are vectors tangent to the membrane surface. We denote the contravariant surface

base vector as Gα for referential configuration. According to the definition of the

dual surface basis vectors, Gα · Gβ = δαβ , ( δαβ is the Kronecker delta), Gα can be

computed as follow

Gα = GαβGβ, (2.3)

where Gαβ can be computed through the inverse of the matrices [Gαβ], [Gαβ] =

[Gαβ]−1. The components of metric tensor Gαβ are defined as

Gαβ = Gα ·Gβ. (2.4)

Likewise for the current configuration, the dual basis vector is gα = gαβgβ, where

gαβ = gα · gβ.

The in-plane part of the deformation gradient, still denoted as F, can be

written with the convected basis

F = gα ⊗Gα, (2.5)

and the inverse deformation gradient and the transpose of F which will be used in

the future are defined by

F−1 = Gα ⊗ gα, FT = Gα ⊗ gα. (2.6)

The Green-Lagrangian strain tensor is

E =
1

2
(FTF− I), (2.7)
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I here is the identify tensor. Like previous transformation of F, the Green-Lagrangian

strain tensor can be also written in the convected basis

E =
1

2
((Gα ⊗ gα)(gα ⊗Gα)− I) =

1

2
(gαβG

α ⊗Gβ − I). (2.8)

For the identify tensor I, it can be written as I = GαβG
α⊗Gβ, the reason is as follow

GαβG
α ⊗Gβ = (Gα ·Gβ)Gα ⊗Gβ = (Gα ⊗Gα)Gβ ⊗Gβ = I. (2.9)

The Green-Lagrangian strain tensor can be computed with the metric tensor

E =
1

2
(gαβ −Gαβ)Gα ⊗Gβ. (2.10)

The Cauchy-Green deformation tensor is

C = FTF = gαβG
α ⊗Gβ. (2.11)

2.1.2 Kinetics

The static equilibrium of the membrane is governed by the balance equation

[20, 53]

1
√

g
(
√

gtαβgα),β + b = 0, (2.12)

where g = det(gαβ), tαβ is the component of the Cauchy stress resultant tensor t,

written as t = tαβgα ⊗ gβ, b is the external force per unit current area [49].

The relation between Cauchy stress σ and Cauchy stress resultant t can be

described as t =
∫ h

2

−h
2

σdh ≈ hσ and in components tαβ ≈ hσαβ , where h is the

thickness. In this work, for the convenient in the inverse calculation, tαβ here is

the components of stress resultant tensor in the deformed configuration basis. Note
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that as the tension (resultant) tensor, t can be written in any configurations basis, i.e.

t = TαβGα⊗Gβ, where Tαβ is the resultant components in the reference configuration

basis.

2.1.3 Constitutive relations

Constitutive equations describe material response to applied mechanical or

other types of loads. We first define S as the second Piola-Kirchhoff stress. The

relation between Cauchy stress tensor σ and second Piola-Kirchhoff stress tensor S

is written as follow

σ = J−1FSFT , (2.13)

where J = detF =
√

g
G

is the surface Jacobian, g and G are the determinants of

the matrices [gαβ] and [Gαβ], respectively. The second Piola-Kirchhoff stress plays a

pivoting role in the energetic development and constitutive relations.

If we define Ts as the second Piola-Kirchhoff stress resultant, the transforma-

tion for stress resultant reads

Ts = F−1(Jt)F−T , J = detF. (2.14)

Introducing t = tαβgα ⊗ gβ and Eq. (2.6) in Eq. (2.14), Ts can be written in the

convected basis

Ts = Gδ ⊗ gδ(Jtαβgα ⊗ gβ)gγ ⊗Gγ = JtαβGα ⊗Gβ. (2.15)

The constitutive equation of a hyperplastic membrane is specified by a surface

strain energy function ψ. The second Piola-Kirchhoff stress tensor Ts usually can be



www.manaraa.com

17

computed through strain energy relation

Ts =
∂ψ

∂E
. (2.16)

In the convected basis, Ts can be understood as the function of the gαβ. We further

use chain role and get

Ts = 2
∂ψ

∂gαβ
Gα ⊗Gβ. (2.17)

If we write tensor Ts in the referential configuration’s basis Ts = Tαβs Gα ⊗Gβ, we

can get

Tαβs = 2
∂ψ

∂gαβ
. (2.18)

Comparing Eq. (2.17) with Eq. (2.15), for component, it’s obviously that

Jtαβ = 2
∂ψ

∂gαβ
= Tαβs . (2.19)

Note that tαβ here is the components of Cauchy stress resultant t in the convected

basis of deformed configuration, and Tαβs is the components of second Piola-Kirchhoff

stress resultant tensor Ts in the convected basis of the referential configuration. This

expression is very useful in the inverse calculation. We will expand the discussion in

the inverse shell theory.

Here we use a hyperelastic material model proposed by Holzapfel et al. [25, 24,

23] as an example to explain how to derive the stress with convected basis. Holzapfel’s

models assume that the material consists of anisotropic matrix reinforced by two

families of fibers. Orthotropic means the two families of fibers are perpendicular to

each other. Also, if one family of fibers presents, the material reduces to transversely
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isotropic. We recall the Cauchy-Green deformation tensor C = FTF = 2E + I. From

the alternation in last section, it’s easy to get Ts = 2 ∂ψ
∂C

.

Let N1 and N2 be the two families of fibers’ directions. The energy function

in this material model depends on the following invariants of tensor C

I1 = trC, I2 = detC, (2.20)

as the isotropic part, and

I4 = N1 ·CN1, I6 = N2 ·CN2 (2.21)

as the anisotropic part. Substituting C = gαβG
α ⊗Gβ into Eq. (2.20), we express

the invariants in tonsorially invariant forms:

I1 = gαβGαβ, I2 =
g

G
. (2.22)

In Eq. (2.21), I4 and I6 are the square stretches of along the fiber directions N1

and N2, respectively. In the reference configuration, N1 and N2 can be written as

N1 = N α
1 Gα and N2 = N α

2 Gα respectively. Therefore I4 and I6 can be written as

I4 =
N α

1 gαβN β
1

N δ
1 GδγN γ

1

, I6 =
N α

2 gαβN β
2

N δ
2 GδγN γ

2

. (2.23)

Holzapfel suggested a reduced energy form that depends on I1, I2, I4 and I6 only. The

energy function assumes the form

ψ = ψiso(I1, I2) + ψanis(I4, I6). (2.24)

The components of Ts follows as

Tαβ
s = 2

∂ψiso

∂I1
Gαβ + 2I2

∂ψiso

∂I2
gαβ+2(N δ

1 GδγN γ
1 )−1I4

∂ψanis

∂I4
N α

1 N β
1 +

2(N δ
2 GδγN γ

2 )−1I6
∂ψanis

∂I6
N α

2 N β
2 ,

(2.25)
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where α, β, δ, γ = 1, 2, and repeating index implies summation.

2.2 Shell theory

In this section, we review the basic theory of stress resultant shell. A shell is

a curved surface-like continuum which is significantly thin in comparison to its span.

Kinematically, a shell is described by a deformable mid-surface, and the rotation of

the normal of the middle surface. The shell theory we used is the geometrically exact

stress resultant shell elements originally developed by Simo’s group [69, 70, 71, 72,

73, 68], which are based on the direct shell theory [10]. The inverse formulations of

the stress resultant shell was developed by Zhou and Lu in [101].

2.2.1 Kinematics

In the direct shell theory, the shell kinematics is described by a pair of defor-

mation fields, (φ,d), where φ presents the position of the mid-surface, and d, the

director field, describes the surface normal. If we use R ⊂ R3 to indicate the reference

configuration, as showed in Figure 2.2, R can be described as

R := {X ∈ R3|X = Φ + ξD, ξ ∈
[
−h

2
,
h

2

]
}, (2.26)

where h is the thickness of the shell. Likewise the deformed configuration C can be

written as

C := {x ∈ R3|x = φ+ ξd, ξ ∈
[
−h

2
,
h

2

]
}. (2.27)

If we use (ξ1, ξ2) to represent the surface coordinate, as illustrated in Figure 2.2, x
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Figure 2.2: Illustration of shell deformation.

can be written as

x = φ(ξ1, ξ2) + ξd(ξ1, ξ2). (2.28)

(ξ1, ξ2) form a convected coordinate system. X is

X = Φ(ξ1, ξ2) + ξD(ξ1, ξ2). (2.29)

The convected basis vectors in the current configuration gI = ∂x
∂ξI
, (I = 1, 2, 3)

can be written as:

gα = φ,α + ξd,α, g3 = d. (2.30)

While in the reference configuration,

Gα = Φ,α + ξD,α, G3 = D. (2.31)
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The Latin indices range from 1 to 3 and the Greek indices range from 1 to 2. The

subscript comma followed by an index denotes the derivative with respect to the

corresponding coordinate.

On the mid-surface where ξ = 0, if we use aα to denote the basis vectors, we

get

aα = φ,α, a3 = d. (2.32)

In the reference configuration,

Aα = Φ,α, A3 = D. (2.33)

Note that the surface basis vectors aα and Aα here can be understood as the basis

vectors gα and Gα discussed in membrane theory in section § 2.1. As described in

the membrane theory, the in plane deformation gradient can be written as

F = aα ⊗Aα. (2.34)

The Cauchy-Green deformation tensor is

C = FTF = aαβA
α ⊗Aβ. (2.35)

2.2.2 Balance laws

To present the equilibrium equation of the shell, we first define the surface

Jacobian
√
a = ‖a1 × a2‖. We define m̃α the director stress

m̃α :=
1√
a

∫ h
2

−h
2

ξσgαjdξ, (2.36)
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σ is the Cauchy stress, we can get the stress resultant tα and stress couple mα as

tα :=
1√
a

∫ h
2

−h
2

σgαjdξ,

mα := d× 1√
a

∫ h
2

−h
2

ξσgαjdξ.

(2.37)

Here gα is the dual basis of gα. j is the Jacobian of configuration mapping. From

[69], we can get that j = [g1 × g2] · g3.

The momentum equations for the shell take the form

1√
a

(
√
atα),α + t̄ = 0,

1√
a

(
√
amα),α + φ,α × tα + m̄ = 0.

(2.38)

t̄ and m̄ are the resultants of the external force and couple, respectively.

Calculations are carried in the convected coordinate system. The stress and

stress couple resultants in the convected surface for current configuration can be

written as follows:

t̃ := t̃αβaα ⊗ aβ,

q̃ := q̃αaα,

m̃ := m̃αβaα ⊗ aβ,

(2.39)

where t̃ and q̃ are the effective membrane and shear stress resultants. The components

t̃αβ and q̃α are defined by

t̃αβ = tαβ − λαµm̃βµ, q̃α − λ3µm̃αµ, (2.40)

where λαµ and λ3µ are coefficients in d,α = λαµaµ + λ3µd [69].

Note that t̃αβ, m̃αβ and q̃α are the components of the effective Cauchy stress,

stress couple resultants and transverse shear resultants. To make it clear, we write
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out the full tensors

t̃ = t̃αβaα ⊗ aβ = T̃αβAα ⊗Aβ,

m̃ = m̃αβaα ⊗ aβ = M̃αβAα ⊗Aβ,

q̃ = q̃αaα = Q̃αA
α.

(2.41)

To establish the weak form from Eq. (2.38), we first introduce the deformation

measures that defined the local deformation of the shell

aαβ := aα · aβ, Aαβ := Aα ·Aβ,

καβ := aα · d,β, Kαβ := Aα ·D,β,

γα := aα · d, Γα := Aα ·D.

(2.42)

In the membrane theory, we have already shown that the membrane Green-

Lagrangian strain can be computed by

ε := εαβA
α ⊗Aβ =

1

2
(aαβ − Aαβ)Aα ⊗Aβ. (2.43)

The curvatures and transverse shear strain defined relative to the convected coordi-

nate can be written as

ρ := ραβA
α ⊗Aβ = (καβ −Kαβ)Aα ⊗Aβ,

δ := δαA
α = (γα − Γα)Aα.

(2.44)

The stress resultant can be computed through constitutive relations which re-

late them to the deformation measures introduced in Eq. (2.42). We use ψ represents

energy in shell stucture, and Ts, to represent these second Piola-Kirchhoff stress re-

sultant tensors. The components of (Ts,Ms,Qs) in referential convected basis can
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be computed through constitutive equations:

T̃αβs =
∂ψ

∂εαβ
= 2

∂ψ

∂aαβ
= Jt̃αβ,

M̃αβ
s =

∂ψ

∂ραβ
= Jm̃αβ,

Q̃α
s =

∂ψ

∂δα
= Jq̃α.

(2.45)

J =
√

a
A

, where a = det(aαβ) and A = det(Aαβ), so J is the area stretch.

We can further get the weak form of the equilibrium equations Eq. (2.38)∫
AR

[T̃s
αβ
δεαβ + M̃s

αβ
δραβ + Q̃αδδα]dµ−Gext(δψ) = 0, (2.46)

where AR is the referential surface area, dµ = ‖A1 ×A2‖ dξ1dξ2 is the area element,

and Gext(δψ) is the virtual work done by external force and moment [69].

Corresponding to the 2nd Piola-Kirchhoff stress resultant tensor Eq. (2.15),

in the mid-surface (2D problem), the referential resultant tensor can be written as

T̃s = Jt̃αβAα ⊗Aβ, . (2.47)

Similarly, the referential stress couple and transverse shear stress resultant can

be written as

M̃s = Jm̃αβAα ⊗Aβ, Q̃s = Jq̃αAα. (2.48)

If we use (δφ, δd) represents the admissible variations on the current configu-

ration, the variations of the strain components in Eq. (2.42) follow as

δaαβ = δφ,α · φ,β + φ,α · δφ,β,

δκαβ = δφ,α · d,β + φ,α · δd,β,

δγα = δφ,α · d + φ,α · δd.

(2.49)
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The weak form can also be written as

∫
AR

J [
1

2
t̃αβδaαβ + m̃αβδκαβ + q̃αδγα]dµ−Gext(δψ) = 0. (2.50)

The derivation from Eq. (2.38) to Eq. (2.50) is described in [69].

2.3 Inverse elastostatic method

Inverse elastostatic stress analysis is a method for solving the equilibrium prob-

lem of an elastic material body. It takes the deformed geometry and the correspond-

ing load as input and pursues the stress-free configuration. The inverse elastostatics

method belongs to the family of inverse methods that seek the initial data of bound-

ary value problems. There are a number of ways to formulate inverse problem for

elastic systems; the one that is followed in this and preceding work in our group

originated from the work by Govindjee et al. [18, 19, 39]. Govindjee’s idea hinges

on the fact that the stress in an elastic body depends on the local relative deforma-

tion from the reference to the current configuration. If one of these configurations is

given, the other can be found from equilibrium assuming that the applied load and

material constitutive equations are known. Govindjee also introduced a finite element

formulation which differs minimally from the forward code. The difference lies in the

use of constitutive relations and the solution paradigm. In the forward approach, the

constitutive equation is given in terms of the strain measures in the forward motion.

In contrast, the constitutive equation in the inverse approach is represented in terms

of the strain measures of the inverse motion. In the inverse formulation, the initial

stress-free configuration is to be solved. Thus, in a Newton type iterative procedure,
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the linearization of the weak form goes along an opposite direction of that in the for-

ward case. While the increments of unknowns are updates to the current (deformed)

configuration in the forward formulation, the increments of unknowns in the inverse

formulation are the updates of the reference configuration [100]. A reparameterization

of the stress functions in terms of inverse strain measures, as well as the lineariza-

tion of the stress functions with respect to the referential increments, furnishes the

backbone of the inverse finite element formulation.

For some membrane structures, the inverse approach has an unique advantage

such that it can accurately predict the wall stress without knowing the realistic ma-

terial property. This is because such a structure by itself is statically determined,

or at least approximately so. By formulating equilibrium equation directly on the

given deformed configuration, the material independence natural of the problem can

be maximally exploited. The forward analysis, on the other hand, does not have

this advantage because the deformed shape depends on the material property. The

membrane inverse elastostatic method is the backbone of PWIM. We use the inverse

method to predict the stress distributions at deformed configurations, thus forming

the pointwise stress-strain data basis necessary for describing the local property of

the material.

Although the inverse method possesses this remarkable advantage, the inverse

membrane model has several limitations. Membranes cannot sustain a compressive

stress or undergo motions that revert the surface curvature. As such, the inverse

membrane method cannot be used on the flat or concave regions. This is the major
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issue that the present work aims to address.

In the next section we will introduce the inverse shell theory which can elimi-

nate the geometry limitation.

2.3.1 Inverse shell formulations

In the inverse shell theory, the weak form also takes the Eq. (2.50).

∫
AR

J [
1

2
t̃αβδaαβ + m̃αβδκαβ + q̃αδγα]dµ−Gext(δψ) = 0. (2.51)

In the inverse shell analysis, the input data are the current (deformed) con-

figuration of the middle surface, the current director field, the loads applied on the

current configuration, and boundary conditions. The inverse problem can be stated

as: given a deformed configuration C, and corresponding external loads and boundary

conditions on C, find the initial configuration R so that the equilibrium equation is

satisfied.

Since the current configuration is given, it makes sense to write the weak form

in terms of the current configuration

∫
AC

[
1

2
t̃αβδaαβ + m̃αβδκαβ + q̃αδγα]dµ−Gext(δψ) = 0, (2.52)

where AC is the current surface area, dµ = ‖a1 × a2‖ dξ1dξ2 is the current area

element, and Gext(δψ) is the virtual work done by external force and moment [102].

Opposite to the forward analysis, the kinetic variables (t̃αβ, m̃αβ, q̃α) are re-

garded as the functions of the referential strain measures (Aαβ, Kαβ,Γα). Here we use

the membrane stress strain relation as an example to illustrate this set up. It could
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be described as dt = DtdA , Dt represents the material tensor. If we write Dt in the

components Dt = Dαβδγ
t aα ⊗ aβ ⊗Aδ ⊗Aγ, we can have

Dαβδγ
t = 2

∂t̃αβ

∂Aδγ
= 2

∂(J−1T̃s
αβ

)

∂Aδγ
= 4

∂(J−1 ∂w
∂aαβ

)

∂Aδγ

= 4[J−1
∂2w

∂aαβGδγ

+
1

2
Ts

αβ J
−1

∂Aδγ
] = 4J−1

∂2w

∂aαβGδγ

+ J−1Ts
αβAδγ,

(2.53)

in which, ∂J−1

∂Aδγ
=

∂(
detAδγ
detaδγ

)

∂Aδγ
= J−1Aδγ.

Similarly, the material tensor for bending moment and transverse shear can be

computed. The exclusive inverse shell formulations can be found in [101], the details

are omitted here.

2.4 Pointwise identification method (PWIM)

The basic procedure of PWIM is showed in Figure (2.3). The essential char-

acteristic of this method is that stress and strain data are acquired separately and

obtained simultaneously at infinitely many points. Strain distributions are derived

from surface deformation. The stresses are computed with the inverse membrane

method in each configuration. At each Gauss point, we can get the multiple strain-

stress data, by which we can examine the elastic behavior of the material. Fitting the

pointwise stress-strain data at a point to an appropriate constitutive equation gives

the material properties at that point.

There are three major steps in PWIM: stress acquisition, strain acquisition,

and elastic parameter regression.
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Figure 2.3: Basic procedure of PWIM.

2.4.1 Stress acquisition

The stress in the corresponding deformed configuration can be computed using

the inverse method. The underlying promise is that, the structure of interest is at

least approximately statically determined, and thus, in the inverse paradigm one can

compute the stress using assumed material properties with the expectation that the

stress so computed is a good approximation of the true stress in the structure.
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2.4.2 Stain acquisition and computation

In general, strains are derived from the deformation field of the surface. If we

assume that the surface is parameterized as a finite element mesh, then we have

X =
Nel∑
I=1

NI(ξ
1, ξ2)XI , x =

Nel∑
I=1

NI(ξ
1, ξ2)xI , (2.54)

where the superscript I means the nodal number, Nel is the total number of nodes

in each element, and NI(ξ
1, ξ2) represents the shape function. We use natural co-

ordinates (ξ1, ξ2) to present the (element-wise) convected surface coordinates. The

convected base vector in the deformed (aα) and reference (Aα) configuration can be

calculated, respectively, as

aα =
∂x

∂ξα
=

Nel∑
I=1

∂NI

∂ξα
xI , Aα =

∂X

∂ξα
=

Nel∑
I=1

∂NI

∂ξα
XI . (2.55)

So the components of the covariant metric tensor of the deformed and unde-

formed configuration can be calculated using

aαβ = aα · aβ =
Nel∑
I=1

Nel∑
J=1

∂NI

∂ξα
∂NJ

∂ξβ
xIxJ ,

Gαβ = Aα ·Aβ =
Nel∑
I=1

Nel∑
J=1

∂NI

∂ξα
∂NJ

∂ξβ
XIXJ .

(2.56)

The dual basis vectors are computed using the formula shown in Eq. (2.3) Therefore,

we can express the membrane strain invariants in tensorially invariant as shown in

the example in Eq. (2.22) and Eq. (2.23).

2.4.3 Parameter identification

Imagine that the stress-strain fields in a number of deformed configuration are

obtained so that at every Gauss points we have a stress-strain database. We would
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like to fit the stress-strain data to a constitutive equation. Using the convected com-

ponents aαβ obtained from strain acquisition, with an appropriate constitutive model,

we can calculate the resultant t as a function of metric tensor and elastic parame-

ters (assumed). We can formulate an regression problem minimizing the computed

stress resultant (“experimental stress resultant”) (i)t̂ and the modeled stress resultant

(i)t . Then, a regression algorithm is applied to identify the elastic parameters. We

use SNOPT, a nonlinear regression program [17], to perform parameter regression.

SNOPT requires the user to provide an objective function, which represents the dis-

crepancy between the numerically modeled and experimentally measured material

responses. There are many ways to construct the objective function, i.e., the stress

components, stress invariants, and principal stresses [99]. In the PWIM in [47, 96],

the weighted objective function is set to be

Φ =
N∑
i=1

∥∥∥(i)t−(i) t̂
∥∥∥2
w

=
N∑
i=1

[w((i)t−(i) t̂)] · ((i)t−(i) t̂). (2.57)

where w is the diagonal matrix of weights w =

w1 0 0
0 w2 0
0 0 w3

. Φ here is a function

of elastic parameters only.
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CHAPTER 3
SENSITIVITY OF STRESS TO MATERIAL MODEL IN INVERSE &

FORWARD ANALYSIS OF THIN STRUCTURES

This chapter investigates the sensitivity of stress solutions to material models

in the inverse and forward stress analysis in the context shell structures. We assume

that the bending stress also will be affected by the geometry in shell structure and

less bending will lead a better material insensitivity property. We investigate how the

geometries affect the stress insensitivity here. The geometry contains several aspects,

like thickness and topology (surface geometry). In this chapter, we mainly evaluate

the effects of topology on inverse stress by using three realistic aneurysm structures.

In this work two patient-specific AAAs, twenty six human cerebral aneurysms are

used to investigate the effects of topology on the inverse stress insensitivity. In this

study, the AAAs represent the tubular geometrical models and cereal aneurysms are

saccular geometrical examples.

3.1 Tubular geometry - AAA

Abdominal aortic aneurysms (AAAs) represent permanent localized expan-

sions of the aorta that form between the renal arteries and the iliac bifurcation. AAA

is a common vascular problem with fatal implications and has been an focal point of

interest for biomedical studies [67].

In this work, we use two patient-specific AAA models, a juvenile AAA and

a full grown AAA. The two patient-specific AAAs represent the tubular and mixed
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tubular-saccular geometry, respectively. These two models are expected to have dif-

ferent magnitude of bending stress in their response. We assume that with more

bending stress, the stress insensitivity maybe compromised. In the second part of

this work, we compared the effects of bending stresses on the stress insensitivity.

3.1.1 FEA models shell

The juvenile AAA and full grown AAA are both patient-specific models. The

imaged morphology of the AAA is assumed to be taken as deformed configuration

under 100 mmHg pressure. Because the fluid shear stress is much smaller than the

wall stress caused by the pressure, in this work, for all the cases, we exclude the fluid

shear stress. For each AAA, the thickness is taken to be 1.9 mm uniformly. For the

boundary condition, the edges of the vasculature are fixed.

3.1.2 Material model

To numerically access the influence of material parameters, we carry out the

inverse analysis for two families of material models (Fung model and neo-Hookean

model). Within each material model, the elasticity parameters are varied to yield

for sub-models. For comparison, we also conduct the corresponding forward analysis.

The stress results are compared within each family and cross families as well. The

baseline model for the first family is the anisotropic Fung model used in [102]. The

Fung model’s energy function assumes the form

ψm = c(eQ − 1),

Q = d1E
2
11 + d2E

2
22 + 2d3E11E22 + d4E

2
12.

(3.1)
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In this equation, c, d1, d2, d3, d4 are material parameters and are set as c = 0.16N/mm, d1 =

14.89, d2 = 15.20, d3 = 7.57, d4 = 4.96. The sub-model in this family is generated by

magnifying the stiffness parameter c by 10 times. To contrast with the neo-Hookean

model, we set the Fung model here as anisotropic.

The second family is modeled by the neo-Hookean material, which is an

isotropic hyperelastic material. The model is specified by the strain-energy function

W = α(I1 − 2logJ − 2) + β(I1 − 2)2, (3.2)

where W is the strain-energy density, I1 = tr(FTF), J = detF, and α, β are material

constants.

We set the material with the population mean material parameters α =

0.174N/mm2, β = 0.188N/mm2 [52, 50]. The sub-model in this family is gener-

ated by magnifying the stiffness parameter α by 10 times.

3.1.3 Results

3.1.3.1 Juvenile AAA

Deformed configuration calculated using the forward method with the baseline

Fung material model is compared to the one obtained with the baseline neo-Hookean

material. Figure 3.1 shows the differences of deformed configurations computed with

the two baseline material models. The initial configuration predicted using the inverse

method with the baseline Fung material model is compared to the one obtained

with the baseline neo-Hookean material in Figure 3.2. We can find that the initial

configurations predicted by the inverse method are distinctly different for two material
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(a) Fung’s model (b) neo-Hookean model

Figure 3.1: Deformed shape (mesh) vs. in vivo shape (shaded) using conventional

forward shell method: (a) Fung’s model with baseline material parameters; (b) neo-

Hookean model with baseline material parameters.

models.

The Von Mises stress results of Fung model using the forward and inverse

method respectively in Figure 3.3. From the stress distributions (in Figure 3.3(a)

and Figure 3.3(b)) are slightly different between two Fung models by using forward

method, while in the inverse method, the stresses (in Figure 3.3(d) and Figure 3.3(e))

present similar distributaries. Corresponding with Figure 3.3 comparison, in Figure

3.4, which presents the Von Mises stress results of neo-Hookean model using the

forward and inverse method respectively, the stresses computed with inverse method

also present close distribution. Stress is plotted in the deformed configuration; but

the meaning of deformed configuration differs in forward and inverse analysis: in
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(a) Fung’s model (b) neo-Hookean model

Figure 3.2: Initial (Stress free) shape (mesh) vs. in vivo shape (shaded) using inverse

shell method: (a) Fung’s model with baseline material parameters; (b) neo-Hookean

model with baseline material parameters.

forward method, we used the deformed shape; it is the configuration obtained from

the analysis upon applying the pressure to the imaged geometry while in the inverse

analysis it is the imaged in vivo geometry. The unit of stress is N/mm2. From

Figure 3.3 and Figure 3.4, we can find that the maximum stresses are all around

0.12N/mm2 by using inverse method with four material models, while the forward

method provided different stress distribution by using four material models.

Figure 3.3(c) shows the percentage stress differences between Fung model with

baseline and elevated stiffness parameters (defined as differ =
|σbaseline−σstiffer|

|σbaseline|
×

100%), using forward method. Contrast to Figure 3.3(c), Figure 3.3(f) is the per-

centage stress differences between the baseline and the stiffer Fung material model
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(a) Baseline (b) Stiffer (c) Forward method

(d) Baseline (e) Stiffer (f) Inverse method

Figure 3.3: Comparison of von Mises stress predicted using the Fung family. First

row: forward method. (a) Baseline; (b) Stiffer; (c) Percentage differences. Second

row: inverse method. (d) Baseline; (e) Stiffer; (f) Percentage differences.
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(a) Baseline (b) Stiffer (c) Forward method

(d) Baseline (e) Stiffer (f) Inverse method

Figure 3.4: Comparison of von Mises stress predicted using the neo-Hookean family.

First row: forward method. (a) Baseline; (b) Stiffer; (c) Percentage differences.

Second row: inverse method. (d) Baseline; (e) Stiffer; (f) Percentage differences.
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in inverse analysis. Figure 3.4(c) presents the percentage stress differences between

the baseline neo-Hookean model and the stiffer neo-Hookean material model in for-

ward method, and Figure 3.4(f) shows the percentage stress differences between the

baseline and the stiffer neo-Hookean material model in inverse analysis. From the

comparison between Figure 3.3(c) and Figure 3.3(f), (or Figure 3.4(c) and Figure

3.4(f) ), it is obvious that, the stress differences computed though inverse method are

much smaller than through forward method. This means that the inverse method

can provide more reliable stress results.

Figure 3.3(d) and Figure 3.3(e) show the results for Fung’s material model

with baseline parameters and elevated stiffness parameters respectively. Figure 3.4(d)

and Figure 3.4(d) show the results for neo-Hookean material model with baseline

parameters and elevated stiffness parameters respectively. In Figure 3.3 and Figure

3.4, we can find that the maximum stresses computed by two different families of

material models are close, around 0.12N/mm2. Figure 3.3(f) presents the percentage

stress differences between the baseline and the stiffer neo-Hookean material model in

inverse analysis. Figure 3.4(f) presents the percentage stress differences between the

baseline and the stiffer neo-Hookean material model in inverse analysis.

From the comparison between Figure 3.3(c) and Figure 3.3(f), (or Figure 3.4(c)

and Figure 3.4(f) ), it is obvious that, the stress differences computed though inverse

method are much smaller than through forward method. This means that the inverse

method can provide more reliable stress results. Figure 3.5 presents the percentage

stress differences between the baseline Fung model and the baseline neo-Hookean
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model by using inverse methods, respectively. This comparison further testifies that

the inverse stress solutions are much more insensitive to material model.

We also compared the maximum stresses of four material models by using both

the forward and inverse methods (Table 3.1). To avoid the peak stress caused by stress

concentration, the 95% of the max von Mises stress is used in this comparison. The

mean stresses obtained from the forward and inverse methods are also presented in

the same table. From Table 3.1, we can find that the maximum stress predicted

by the inverse method is closer than the ones calculated using the forward method,

even with different material models. We use the baseline Fung’s model as reference

model, and percentage difference of 95% maximum stress and mean stress between

the other three material model to Fung’s model (defined as
|σ−σref |
σref

× 100% )is shown

in Table 3.2. Table 3.2 shows that, although with difference material models, the

inverse method can provide reliable maximum stress results.

Table 3.3 shows the von Mises stress differences. From the statistic compar-

isons, one can find that the stresses calculated by using the inverse method are more

insensitive to material models. In all the tables, we use “Fung” to present Fung

material model, and “Neoh” to present the neo-Hookean material model.
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(a) Forward method (b) Inverse method

Figure 3.5: Percentage stress differences between the baseline Fung model and the

baseline neo-Hookean model by using forward and inverse method, respectively: (a)

forward method; (b) inverse method.

Table 3.1: Maximum stress and mean stress of four material models.

95% Max stress Mean stress
Material parameters Forward Inverse Forward Inverse
Fung baseline 0.11740066 0.12108116 0.05233019 0.05208197
Fung stiffer 0.12103883 0.11877020 0.05218226 0.0520730
Neoh baseline 0.09685514 0.12854718 0.04681716 0.05258555
Neoh stiffer 0.08519402 0.11596767 0.04848080 0.05189541
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Table 3.2: Percentage differences of maximum stress and mean stress relative to

reference material model using the forward and inverse methods.

Differences of 95% max stress (%) Differences of mean stress (%)
Material models Forward Inverse Forward Inverse
Fung baseline - - - -
Fung stiffer 3.099 1.909 0.283 0.017
Neoh baseline 17.500 6.166 10.535 0.967
Neoh stiffer 27.433 4.223 7.356 0.358

Table 3.3: Statistics of the percentage differences (%) by using forward and inverse

method, respectively.

Minimum Maximum Mean
Material parameters Forward Inverse Forward Inverse Forward Inverse
Fung: baseline Vs. stiffer 0.013 0.0002 17.679 4.853 1.870 0.763
Neoh: baseline Vs.stiffer 0.539 0.028 20.673 16.868 10.746 7.363
Baseline: Fung Vs. Neoh 0.843 0.025 87.164 17.953 38.422 6.331

3.1.3.2 Full grown AAA

Deformed configuration calculated using the forward method with the baseline

Fung material model is compared to the one obtained with the baseline neo-Hookean

material. Figure 3.6 shows the differences in deformed configuration between the two

material models.

The initial configuration predicted with the baseline Fung material model is

compared to the one obtained with the baseline neo-Hookean material. Figure 3.7



www.manaraa.com

43

(a) Fung’s model (b) neo-Hookean model

Figure 3.6: Deformed shape (mesh) vs. in vivo shape (shaded) using forward shell

method: (a) Fung’s model with baseline material parameters; (b) neo-Hookean model

with baseline material parameters.

presents the comparison in deformed configuration with two material models using

the inverse method.

Figure 3.8 and Figure 3.9 present the Von Mises stress results using Fung

model and neo-Hookean, respectively. Figure 3.8(a) and 3.8(b) show the forward

results for the Fung material model with baseline parameters and elevated stiffness

parameters, respectively. Figure 3.8(d) and 3.8(e) show the inverse results for the

Fung material model with baseline parameters and elevated stiffness parameters, re-

spectively. Figure 3.9(a) and 3.9(b) show the forward results for the neo-Hookean

material model with baseline parameters and elevated stiffness parameters, respec-

tively. Figure 3.9(d) and 3.9(e) show the inverse results for the neo-Hookean material
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(a) Fung’s model (b) neo-Hookean model

Figure 3.7: Initial (Stress free) shape (mesh) vs. in vivo shape (shaded) using inverse

shell method: (a) Fung’s model with baseline material parameters; (b) neo-Hookean

model with baseline material parameters.

model with baseline parameters and elevated stiffness parameters, respectively. Fig-

ure 3.8(c) presents the percentage stress differences between Fung model with baseline

and elevated stiffness parameters using forward method, and Figure 3.8(f) is the per-

centage stress differences between the baseline and the stiffer Fung material model in

inverse analysis. Figure 3.9(c) presents the percentage stress differences between the

baseline neo-Hookean model and the stiffer neo-Hookean material model in forward

method, and Figure 3.9(f) presents the percentage stress differences between the base-

line and the stiffer neo-Hookean material model in inverse analysis. In Figure 3.8(c)

and Figure 3.8(f), the differences by using Fung material model in most regions are

around 9% and 4% for forward method and inverse method, respectively. In Figure
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(a) Baseline (b) Stiffer (c) Forward method

(d) Baseline (e) Stiffer (f) Forward method

Figure 3.8: Von Mises stress results using the Fung models. First row: forward

method. (a) Baseline; (b) Stiffer; (c) Percentage difference. Second row: forward

method. (d) Baseline; (e) Stiffer; (f) Percentage difference.

3.9(c) and Figure 3.9(f) ), for the neo-Hookean material model, it is more obvious

that the stress differences computed though inverse method are much smaller than

through forward method.

The percentage stress differences between the baseline Fung model and the

baseline neo-Hookean model by using the forward and inverse methods respectively

in Figure 3.10. We can find that even across the material model, the stress differences

are quite small using the inverse shell method.
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(a) Baseline (b) Stiffer (c) Forward method

(d) Baseline (e) Stiffer (f) Forward method

Figure 3.9: Von Mises stress results using the neo-Hookean models. First row: forward

method. (a) Baseline; (b) Stiffer; (c) Percentage difference. Second row: forward

method. (d) Baseline; (e) Stiffer; (f) Percentage difference.
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(a) Forward method (b) Inverse method

Figure 3.10: Percentage stress differences between the baseline Fung model and the

baseline neo-Hookean model by using forward and inverse method respectively: (a)

forward method; (b) inverse method.

In addition, we also compared the maximum stresses of four material models

by using both the forward and inverse methods (Table 3.4). To avoid the peak stress

caused by stress concentration, we used the 95% of the max von Mises stress. We

also compared the mean stresses obtained from the forward and inverse methods in

the same table. From Table 3.4, we can find that the maximum stresses predicted

by the inverse method are closer than the ones calculated using the forward method,

even with different material models. We use the baseline Fung’s model as reference

model, and percentage difference of 95% maximum stress and mean stress between

the other three material model to Fung’s model (defined as
|σ−σref |
σref

×100% ) is shown

in Table 3.5.
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Table 3.4: Maximum stress and mean stress of four material models.

95% Max stress Mean stress
Material models Forward Inverse Forward Inverse
Fung baseline 0.237622550 0.28871165 0.10292982 0.10297089
Fung stiffer 0.30959170 0.27297300 0.10866620 0.10237333
Neoh baseline 0.249719850 0.28544460 0.10553018 0.10369119
Neoh stiffer 0.215419150 0.27019140 0.09775672 0.10202119

Table 3.5: Percentage differences of maximum stress and mean stress relative to

reference material model using the forward and inverse methods.

Differences of 95% max stress (%) Differences of mean stress (%)
Material models Forward Inverse Forward Inverse
Fung baseline - - - -
Fung stiffer 30.287 5.451 5.573 0.580
Neoh baseline 5.091 1.131 2.526 0.670
Neoh stiffer 9.344 6.414 5.026 0.922

Table 3.6 shows the von Mises stress differences. Similar with the results in

the juvenile AAA model, the stresses computed by inverse method are more material

insensitive.



www.manaraa.com

49

Table 3.6: Statistics of the percentage differences (%) by using forward and inverse

method, respectively.

Minimum Maximum Mean
Material parameters Forward Inverse Forward Inverse Forward Inverse
Fung: baseline Vs. stiffer 0.931 0.004 35.467 17.682 10.807 3.834
Neoh: baseline Vs.stiffer 1.021 0.076 35.495 14.265 9.208 5.996
Baseline: Fung Vs. Neoh 1.573 0.031 69.544 15.164 15.102 3.519

3.1.4 Bending effects on material sensitivity

In last section, we compare the stress differences. The von Mises stresses

discussed in the last section are the membrane stress. In this part, we will investigate

the affection of bending components on stress insensitivity. To evaluate the extent

to which the bending components affect the stress insensitivity to material, we set

a bending stress factor of α = bendingstress
membranestress×shellthickness . Figure 3.11(a) and Figure

3.11(b) show the distribution of α of juvenile and full grown AAA, respectively. Both

of them are computed through inverse baseline Fung material model. The bending

factors also have the same order of magnitude with other neo-Hookean material model

for the juvenile and the full grown AAA, respectively.

In the Figure 3.11, it is shown that the bending stress in some regions are

relative big compare to the membrane stress, for both AAA models. Some regions,

the bending stress are even bigger than the in-plane stress. So in this case when

the bending can not be omitted, we study the von-Mises stress taking the bending

stress component into consideration. Here the we use (σ′xx, σ
′
yy, σ

′
xy) to represent the
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(a) a (b) b

Figure 3.11: Bending factor distribution of the baseline Fung model: (a) juvenile

AAA model; (b) full grown AAA model.

laminar stress computed from the following equations

σ′xx = σxx +
Myy

I
t, σ′yy = σyy +

Mxx

I
t, σ′xy = σxy +

Mxy

I
t, t ∈ [−h

2
,
h

2
], I =

h3

12
.

(3.3)

These are the equations for stress distribution in linear shell theory. For nonlinear

material the stress no longer varies linearly across the thickness; however, the linear

distributing provides a reasonable approximation. Here we take upper surface (t = h
2
)

where the bending maximally effects the in-plane stress. The new von Mises stress

differences in terms of the upper surface stress is compared in Figure 3.12 and Figure

3.13 for juvenile AAA and full grown AAA, respectively. In Table 3.7 and Table 3.8,

the mean differences are also presented. Like the membrane stress results, the inverse

method remains less sensitive to material models.
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(a) Forward method (b) Inverse method

(c) Forward method (d) Inverse method

(e) Forward method (f) Inverse method

Figure 3.12: Percentage stress differences between of the juvenile AAA by using

forward and inverse method respectively: (a) & (b) stress differences between baseline

Fung with stiffer Fung material model; (c) & (d) stress differences between baseline

neo-Hookean with stiffer neo-Hookean material model; (e) & (f) stress differences

between baseline Fung model with baseline neo-Hookean model.
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Table 3.7: Statistics of the percentage differences (%) in the juvenile AAA by using

forward and inverse method, respectively.

Minimum Maximum Mean
Material parameters Forward Inverse Forward Inverse Forward Inverse
Fung: baseline Vs. stiffer 0.13 0.001 23.821 12.265 3.453 2.146
Neoh: baseline Vs.stiffer 1.529 0.089 39.552 17.598 13.422 7.119
Baseline: Fung Vs. Neoh 5.635 0.071 90.662 18.522 32.457 5.814

Table 3.8: Statistics of the percentage differences (%) in the full grown AAA by using

forward and inverse method, respectively.

Minimum Maximum Mean
Material parameters Forward Inverse Forward Inverse Forward Inverse
Fung: baseline Vs. stiffer 1.553 0.006 35.162 15.516 9.215 3.463
Neoh: baseline Vs.stiffer 3.772 0.003 50.773 13.795 17.847 4.570
Baseline: Fung Vs. Neoh 2.695 0.002 89.115 12.259 23.136 3.942

From all the comparison figures, we can conclude that the inverse stress predic-

tions are indeed much less sensitive to material properties. Comparing the bending

factor distribution and stress differences, it is clear they are co-related; regions of

higher bending factor have bigger stress differences. This is understandable, because

in the shell theory, the equilibrium equations take the form in Eq. (2.38). These stress

components cannot be determined by the balance equations alone, which is different

from the membrane case. There are six unknown stress components, which include
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(a) Forward method (b) Inverse method

(c) Forward method (d) Inverse method

(e) Forward method (f) Inverse method

Figure 3.13: Percentage stress differences between of the full grown AAA by using

forward and inverse method respectively: (a) & (b) stress differences between baseline

Fung with stiffer Fung material model; (c) & (d) stress differences between baseline

neo-Hookean with stiffer neo-Hookean material model; (e) & (f) stress differences

between baseline Fung model with baseline neo-Hookean model.



www.manaraa.com

54

(a) Fung (b) neo-Hookean

Figure 3.14: Bending factor-von Mises stress differences in the juvenile AAA using

inverse method: (a) Fung material model; (b) neo-Hookean material model.

four components from the membrane resultant tensor and two components from the

shear resultant; while the first equation only covers three components. So these six

stress unknowns cannot be solved by the three balance equations alone; we need to

introduce the material model and boundary conditions. In the both AAAs, there are

spots that have higher stresses differences across material models. In these areas, the

bending and transverse shear are not small compared to the membrane stresses.

To further study the bending effects on stress insensitivity, the percentage

difference at every Gauss point in von Mises stress is plotted against the bending

factors at the same point. Figure 3.14(a) presents results for the juvenile AAA using

the inverse Fung material model. Figure 3.14(b) presents the same using the inverse

neo-Hookean material model. Figure 3.15(a) and Figure 3.14(b) present the results

in the grown up AAA bending using inverse fung model and inverse neo-Hookean
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(a) Fung (b) neo-Hookean

Figure 3.15: Bending factor-von Mises stress differences in the Full grown AAA using

inverse method: (a) Fung material model; (b) neo-Hookean material model.

model, respectively. Except Figure 3.14(a), from the other three plots, we can find

that in most points, with the increasing of bending components, the stress differences

between the baseline and stiffer material models also have an increasing trend.

A comparison between deformed shapes in Figure 3.2 with Figure 3.14, and

Figure 3.7 with Figure 3.15, provides some further insight on the bending effects on

stress material insensitivity. Expect Figure 3.14(a), the other three comparison plots

have something in common: the stress sensitivity increases with the bending stress

factor, which means that the bending stress affects the material insensitivity of the

inverse method. There are some points with small bending stress factor and high

stress sensitivity. From predicted stress-free geometries in Figure 3.2 and 3.7, we can

find that, with the exception of Figure 3.2(a), the models also have a large concave

regions in the predicted stress-free geometry. We locate these “edges” points in the
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(a) Fung (b) neo-Hookean

Figure 3.16: “Edge” points locations: (a) juvenile AAA; (b) full grown AAA.

AAA models, which all located on the edge of the large concave part for both the

juvenile AAA and full grown AAA. We mark them in Figure 3.16. These “edges” do

not have so large bending moments as in concave regions, but their stresses are still

affected by the concavities.

The full grown AAA model shows more profound stress insensitivity to mate-

rial properties. This is likely because the large bulge resembles a shallow sac, despite

the overall tubular topology. In the next section, we will further explore the influence

of overall topology.

3.2 Saccular geometries - 26 human cerebral aneurysms

For a further comparison of forward and inverse method, we used 26 patient-

specific cerebral aneurysms. Initial FE geometries of the cerebral aneurysms were
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segmented from Computer Tomography Angiography (CTA) images by Dr. Manasi

Ramachandran, in the Biomedical Engineering Department, University of Iowa. Com-

puted Tomography Angiographic (CTA) images of 26 saccular, patient-specific IAs

were obtained during routine clinical care at University Central Hospital, Helsinki,

Finland. The study was approved by the local ethics committee and the patients

or their relative gave informed consent. The data analysis portion of Human sub-

jects research in this project is approved under the University of Iowa Institutional

Review Board, project #200706742. The FE geometries are further remeshed into

quadrilateral element in Gambit (commercial CFD analysis software by Fluent Inc.).

The difference between the population study and the single aneurysm study in

previous Section is that, we only evaluate the stress sensitivity in one material model,

the Fung model. The energy function for this Fung model is written as

ψm = c(eQ − 1),

Q = d1E
2
11 + d2E

2
22 + 2d3E11E22 + d4E

2
12.

(3.4)

The material parameters c, d1, d2, d3, d4 are set as c = 0.28N/mm, d1 = 17.58, d2 =

12.19, d3 = 7.57, d4 = 4.96. The wall thickness of cerebral aneurysms are all set to

be uniformly 0.2mm. We assume the cerebral aneurysms are fixed at the boundary

edges and under 120 mmHg pressure.

3.2.1 Stress results

The stress results will be presented for all 26 patient-specific cerebral aneurysms.

Figures (3.17)-Figures (3.21) show the first principal stress results by using forward

and inverse method, respectively. In these figures, the upper rows represent the stress
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result computed by forward method and the lower rows are results by using inverse

method.

From these figures, we can find that in some cases, the maximum principal

stress value is higher by using forward method; while in some cases, the comparisons

are on the contrary. Because the maximum stress is an important factor to predict

the rupture, it is necessary to compare maximum stress between forward and inverse

method. To avoid the peak stress caused by stress concentration, the 95% of the

maximum first principal stress is used in this comparison. Figures (3.22) further

indicate that it is the geometry which affects the maximum stress value.

3.2.2 Stress sensitivity study

A sensitivity study is performed by directly comparing the stress solutions

obtained from two sets of material constants. We set the reference model with mate-

rial parameters introduced previously. A comparative material model is generated by

magnifying the stiffness parameter c by 100 times. The first principal stress difference

is defined as
|p′1−p1|
|p1| ×100%, p1 is the first principal stress computed from the reference

material model and p
′
1 the first principal stress computed by comparative material

model. Figures (3.23)- Figures (3.27) show the distribution of principal stress dif-

ferences of all cerebral aneurysms. The statistic comparison of stress differences for

whole 26 cerebral aneurysms is showed in Figures (3.28). To avoid the peak stress

differences caused by boundary effects or stress concentration, we use the 95% maxi-

mum stress differences to conduct the comparison. We find that the inverse method
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Figure 3.17: First principal stress distributions, part I. Upper row: the stress re-

sult computed by forward method; lower row: the stress result computed by inverse

method.
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Figure 3.18: First principal stress distributions, part II. Upper row: the stress

result computed by forward method; lower row: the stress result computed by inverse

method.
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Figure 3.19: First principal stress distributions, part III. Upper row: the stress

result computed by forward method; lower row: the stress result computed by inverse

method.
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Figure 3.20: First principal stress distributions, part IV . Upper row: the stress

result computed by forward method; lower row: the stress result computed by inverse

method.
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Figure 3.21: First principal stress distributions, part V . Upper row: the stress re-

sult computed by forward method; lower row: the stress result computed by inverse

method.

Figure 3.22: The comparison of 95% of the maximum first principal stress between

forward and inverse method, respectively.
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can provide far less sensitive stress result; the maximum stress differences of inverse

method are below 10% for call cases.

In this section, we also compute the bending factor for 26 human cerebral

aneurysms. Figures 3.29-Figures 3.29 present the distributions of bending factor by

using Fung material model in inverse analysis. From these figures, we can find that

in most models, the bending factors in most regions are less than 0.03, even in the

regions with large concavity, the bending factors are still around 0.1. In this case, we

can conclude that in the saccular aneurysm, the bending stress is much smaller than

the membrane stress, and ensure the feasibility of shell PWIM.

3.3 Discussion

3.3.1 Stress insensitivity study

Two AAA models (tubular geometries) are used to compare the stress distri-

bution by using the forward method and the inverse method. With the comparison

of two families of material models (four sets of material models), it is shown that

the stress distributions calculated by the inverse method are more insensitive to the

material model or parameters. The bending stress are also investigated, compar-

ing the stress differences between material models. The results show that the stress

differences may be affected with bending stresses increment.

We use 26 realistic human cerebral aneurysms as saccular geometrical examples

to investigate the stress differences between forward and inverse method. We first

show that the major factor to affect the maximum stress is geometry, not the analysis
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Figure 3.23: First principal stress differences by using forward and inverse method,

respectively, part I. Upper row: the stress result computed by forward method; lower

row: the stress result computed by inverse method.



www.manaraa.com

66

Figure 3.24: First principal stress differences by using forward and inverse method,

respectively, part II. Upper row: the stress result computed by forward method;

lower row: the stress result computed by inverse method.
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Figure 3.25: First principal stress differences by using forward and inverse method,

respectively, part III. Upper row: the stress result computed by forward method;

lower row: the stress result computed by inverse method.
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Figure 3.26: First principal stress differences by using forward and inverse method,

respectively, part IV . Upper row: the stress result computed by forward method;

lower row: the stress result computed by inverse method.
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Figure 3.27: First principal stress differences by using forward and inverse method,

respectively, part V . Upper row: the stress result computed by forward method;

lower row: the stress result computed by inverse method.

Figure 3.28: Stress sensitivity in inverse and forward analysis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.29: Bending factors in 26 patient-specific cerebral aneurysms, part I.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.30: Bending factors in 26 patient-specific cerebral aneurysms, part II.
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(a) (b)

Figure 3.31: Bending factors in 26 patient-specific cerebral aneurysms, part III.

method. In the stress sensitivity study, we also show that the inverse method can

provide close stress predictions even though the material parameters vary in a large

range.

The stress in cerebral aneurysms (saccular geometries) are more insensitive

to material models. In another word, the cerebral aneurysms turn to be more

likely statically determined. This can be explained from two angles. The first

one, is the relative thickness in two aneurysms are different; the relative thickness

in AAA (thickness/diameter is around 1/15) is greater than cerebral aneurysms

(thickness/diameter is around 1/35). The bending stress is in proportion to wall

thickness; a thicker wall entails a higher bending stress which pushes the structure

further away from being statically determined. The second reason is open versus

closed geometry; AAA has more openings and and thus the wall stress is more prone

to the influence of boundary conditions. Collectively, the influence of geometry may

be evaluated using the bending factor. Shell PWIM is expected to apply to cases
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when the bending factor is small. It appears that cerebral aneurysms (large ones) are

suitable for shell PWIM.

3.3.2 Implications of inverse analysis for AAA

Although the purpose of our study is not AAA stress analysis, the finding of

stress sensitivity has an important implication for AAA analysis. AAA is the cause

of death in 1.3% of men over 65 years of age in industrial countries, mostly due to

rupture [61]. Current clinical practices evaluate the likelihood of rupture only on

the basis of the maximum transverse bulge diameter [87]. Although this criterion

is widely used, it has been reported that small AAAs can rupture while large ones

do not [84]. From a biomechanical standpoint, rupture occurs when the wall stress

exceeds the local strength of the tissue. Therefore, mechanical stress could be more

relevant indicator for rupture assessment.

Considering the importance of stress evaluation, an important task of biome-

chanical analysis is to predict the wall stress in AAA. Researchers have been using the

finite element method to calculate the stress distribution in AAAs [13, 12, 56, 85, 58].

In previous studies [13, 56], researchers showed that the shape affected the wall stress

distribution within the realistic AAAs. Recently, many studies reported that using

simplified linearly elastic material properties or inappropriate tissue material model

can lead to erroneous stress distribution [82, 88]. Doyle et al. examined the effect

of modeling on the resulting wall stress distributions of a realistic AAA. Using both

linear and non-linear material properties, they showed that the peak wall stress was
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reduced when more realistic parameters were utilized [8]. Nicosia et al. demonstrated

that the utilization of an isotropic constitutive relation for the ascending aorta is insuf-

ficient in providing the wall stress distribution [54]. Vande Geest et al. [85] applied

an anisotropic constitutive relation to patient-specific AAA simulation; the results

suggest that the peak wall stress is significantly increased compared to those from

isotropic material models. While this effect may be patient-specific, for some simu-

lations the isotropic relation resulted in a higher peak stress. Recently Rodriguez’s

group [58, 57] investigated that the material anisotropy on the magnitude and dis-

tribution of the AAA’s peak stress and showed that the anisotropy in the material

behavior of aneurysmal tissue would scale up the maximum principal stress acting on

the patient specific AAAs.

Studies cited above point to modeling factors that may affect the stress pre-

diction in AAA analysis. There is an important issue that these studies overlooked:

inverse versus forward method of analysis. The current study clearly indicate that the

inverse method give a more reliable stress prediction in the sense that the solution

is much less sensitive to the use of material model. This is important for practi-

cal applications because it is impossible to accurately obtain the heterogeneous and

anisotropic properties of AAA tissues. From the forward analysis, we can see that

the material models affect the wall stress distribution and peak stress value up to

30% of difference. Accurate material descriptions are needed for predicting the initial

geometry as well as stresses in a different pressure; however, as long the stress in the

given deformed state is concerned, the inverse method appears to give a more reliable
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prediction.
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CHAPTER 4
IMPLEMENTATION OF A CEREBRAL ANEURYSM TISSUE

MODEL IN FORWARD AND INVERSE SHELL ELEMENT

Kroon and Holzapfel [41, 42] developed a hyperelastic material model specifi-

cally to describe collagenous structures in the cerebral aneurysm tissues [33, 32, 65].

The model describes the tissue as a 8-ply laminate of collagen sheets with uni-

directionally aligned fibers with in laminate. This 8-ply laminate structure is charac-

terized as that the collagen fibers are uni-directionally aligned within each laminate.

Hozalpfel’s model was used in the development of membrane PWIM [98]. In this

work, this material is implemented into forward and inverse shell element to facilitate

the development of shell PWIM.

4.1 Holzapfel model

In the Holzapfel material model in this work, the each fiber angle with respect

to a local in-plane coordinate axis can by computed with this equation

φI =
I − 1

8
π, I = 1, 2, ..., 8. (4.1)

In this case, the principal collagen fiber directions, η1 − η2 in Figure 4.1, are

defined by rotation angle θ with respect to the reference coordinate system η′1 − η′2.

Because the collagen fibers are uniformly distributed, the two principal fiber directions

η1 − η2 (or η′1 − η′2) are locally orthogonal.
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Figure 4.1: Schematic illustration of uniformly distributed collagen fibers (Repro-

duced from [42]).

The model is specified by the energy function [42]

ψm =
8∑
I=1

kI
8a

(exp[a(λ2I − 1)2]− 1),

λ2I = C ·NI ⊗NI , (I = 1, 2, ..., 8).

(4.2)

In this equation NI is the I-th fiber direction vector, kI is the I-th fiber stiffness,

λI denotes the stretch along the I-th collagen fiber. a is a dimensionless material

constant, the exponent a is the amount of nonlinearity of the collagen fibers, and a is

assumed to be the same value through the thickness for all collagen fibers. C is the

in-plane right Cauchy-Green tensor. So in the energy density function, kI and a are

the material parameters.

It can be derived that E1 =
∑8

I=1 kIcos
4φI and E2 =

∑8
I=1 kIsin

4φI [42] are
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the material’s principal symmetry direction’s stiffness parameters. With reference

Figure 4.1, k1 and k5 are the fiber stiffness along the first principal direction η1 and

second principal direction η2, respectively. The relation between k1 and k5 and other

fiber stiffness is assumed to be [98]

kI =
5− I

4
k1 +

I − 1

4
k5, I = 2, 3, 4;

kI =
9− I

4
k5 +

I − 5

4
k1, I = 6, 7, 8.

(4.3)

From Eq.(4.3), we can establish the relation between E1, E2 and k1, k5. Through the

principal stiffness parameters E1, E2, the 8-fiber stiffness can be computed by[
k1
k5

]
=

[
1
6
(7− 3

√
2) 1

6
(−5 + 3

√
2)

1
6
(−5 + 3

√
2) 1

6
(7− 3

√
2)

] [
E1

E2

]
. (4.4)

4.2 Constitutive equations

In the direct shell theory, the energy function ψ consists three components

ψ = ψm + ψb + ψs. (4.5)

ψm, ψb, and ψs represent the membrane energy, bending energy, and transverse shear

energy, respectively; they depend on surface deformation tensor (ε), curvature tensor

(ρ) and shear strain(δ), respectively. We defined

ε := εαβA
α ⊗Aβ =

1

2
(aαβ − Aαβ)Aα ⊗Aβ,

ρ := ραβA
α ⊗Aβ = (καβ −Kαβ)Aα ⊗Aβ,

δ := δα = (γα − Γα)Aα.

(4.6)

4.2.1 Forward stress function

We introduce the constitutive relations for the 8-fiber Holzapfel material model

used in the forward method. As discussed, the surface energy density for the 8-fiber
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Holzapfel material model is assumed to take the from

ψm =
8∑
I=1

kI
8a

(exp[a(λ2I − 1)2]− 1),

λ2I = C ·NI ⊗NI , (I = 1, 2, ..., 8),

(4.7)

where kI and a are material parameters. The energy form gives rise to the following

tension function

T̃αβs =
8∑
I=1

kI
2

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)(N p
I ApqN

q
I )−1N α

I N β
I . (4.8)

The material tangent tensor is derived by equation

Dαβδγ
mm = 2

∂T̃αβs
∂aδγ

. (4.9)

We can further get

Dαβδγ
t = Dαβδγ

mm =
8∑
I=1

kI [2a(λ2I − 1)2 + 1](N p
I ApqN

q
I )−2N α

I N β
I N δ

I N γ
I . (4.10)

Following the construction of bending energy function presented in [101], the

bending energy is assumed to take the form

ψb =
h2

24
Hαβδγραβρδγ, (4.11)

where H = HαβδγAα⊗Aβ⊗Aδ⊗Aγ is the elasticity tensor at the ground state, that

is, ε = 0. So we can get Hαβδγ from the following formula

Hαβδγ := Dαβδγ
mm |λI=1 = 4

∂2ψm
∂aαβaδγ

|εαβ=0. (4.12)

So the ground state elasticity tensor of the membrane energy function of 8-fiber

Holzapfel model can be obtain as

Hαβδγ =
8∑
I=1

kIN
α
I N β

I N δ
I N γ

I . (4.13)
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The transverse shear strain energy ψs takes the form

ψs =
1

2
GδαA

αβδβ, (4.14)

where G is the shear moduli and set as G = E1+E2

2
. The shear resultant is

Q̃α
s =

∂ψs
∂δα

= GAαβδβ. (4.15)

So the material tensor for shear can be computed as

Dαβ
s =

∂Q̃α
s

∂δβ
= GAαβ. (4.16)

4.2.2 Inverse stress function

The surface energy density for the 8-fiber Holzapfel material model still takes

the form in Eq. (4.7). The energy form gives rise to the following tension function

t̃αβ = J−1
8∑
I=1

kI
2

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)(npIApqn
q
I )−1nαI nβI , (4.17)

where J−1 = 1/detF.

Different from the forward method, in inverse calculation, the material tangent

tensor for membrane part is derived by equation

Dαβδγ
t = 2

∂t̃αβ

∂Aδγ

. (4.18)

Eq. (2.53) can also written as Dαβδγ
t = 2J−1 ∂(T̃s

αβ
)

∂Aδγ
+ J−1Ts

αβAδγ. Set Dαβδγ
mm =

2∂(T̃s
αβ

)
∂Aδγ

, which can be computed by

Dαβδγ
mm = −

8∑
I=1

kIexp(λ2I − 1)2[2a(λ2I − 1)2 + λ2I ](npIApqn
q
I )−2nαI nβI nδInγI . (4.19)
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From the bending energy in last section, we can written the bending moment

as

M̃αβ =
h2

12
Hαβδγρδγ. (4.20)

The material tensor for bending in [101] is written as

Dαβδγ
bb =

∂M̃αβ

∂Kδγ

= −h
2

12
Hαβδγ. (4.21)

The material tensor for shear in [101] can be computed as

Dαβ
ss =

∂Q̃α
s

∂Γβ
= −GAαβ. (4.22)

4.3 Validation

This material model is implemented into existing forward and inverse shell

elements.

4.3.1 Forward-inverse loop

The element formulation is first validated using a forward-inverse loop. First,

we assume an initial configuration R, and apply the loads and boundary condition,

to obtain the deformed configuration C in the forward manner. Subsequently, the

deformed configuration C is used as input, through the inverse method, to compute

the stress-free configuration R′.

The material parameters are set as

E1 = 0.92N/mm, E2 = 0.72N/mm, a = 20. (4.23)

In this study, the first principal fiber direction in the reference configuration
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Figure 4.2: Prediction of inverse method.

is assumed to be parallel to the local basal plane. By using this material model, we

will use two examples to validate the inverse method.

4.3.1.1 Example: pressurized hemisphere

A hemisphere shell is used in the analysis. The radius of this hemisphere is

1mm, the thickness is set as 0.05mm. The edge is fixed on both displacement and

rotation. The 100 mmHg pressure is used as load.

Figure 4.2 shows the geometry of three configurations. The black mesh shows

the initial configuration R, the red mesh shows the configurations after the forward

computation C, and the green mesh shows the stress-free configuration R′ the inverse

calculation predicted. At some places, we can only see green or black mesh, because

the inverse prediction coincides with the the initial coordinate, so meshes overlap with

each other.
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To quantify the accuracy of inverse prediction, in Table 4.1 random nodes in

hemisphere mesh are selected to compare the initial nodal coordinate with the same

node’s nodal coordinates inversely predicted from the deformed configuration. The

coordinates comparison also shows that the inverse method can predict the stress-

free configuration very well. The material model used here is 8-fiber anisotropic

material model. In the inverse analysis step, the first principal fiber direction in the

deformed configuration is also assumed to be parallel to the local basal plane. The

fiber direction in the deformed configuration may be changed in the forward analysis

step, and will not be parallel to the local basal plane. Since we are not using the

actual deformed fiber direction in the inverse computation, the inverse model strictly

speaking is different from the forward model, and that explains the small discrepancies

in the position vectors.

Table 4.1: Nodal coordinate in initial configuration R and stress-free configuration

R′ predicted by inverse method.

Initial nodal coordinate Inverse predicted coordinates
(0.9436E+00, 0.3194E+00, 0.8642E-01) (0.9434E+00, 0.3203E+00, 0.8627E-01)
(0.9616E-01, -0.9917E+00, 0.8534E-01) (0.9641E-01, -0.9933E+00, 0.8514E-01)
(0.5652E+00, 0.4240E-01, 0.8237E+00) (0.5654E+00, 0.4245E-01, 0.8219E+00 )
(-0.1278E-01, 0.3134E+00, 0.9495E+00) (-0.1280E-01,0.3135E+00, 0.9473E+00)
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Figure 4.3: Prediction of inverse method.

4.3.1.2 Example: bending plate

In this example, we use a plate model as an example. We fix the position and

rotation of one edge on the plate, and apply a bending moment on the other edge

making the plate to roll-up.

Figure 4.3 shows the geometry of three configurations. To make it clearly

to compare, the shade shows the initial configuration R, the red mesh shows the

configurations after the forward computation C, and the green mesh shows the stress-

free configurationR′ the inverse calculation predicted. We can find that the stress-free

configurationR′ predicted by inverse method fits the initial configurationR very well.
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Figure 4.4: Stress distribution.

4.3.2 Stress solution

Taking the hemisphere as input to the inverse analysis, assuming the pressure

p =100 mmHg, the stress distribution in configuration R is computed and is shown

in Figure 4.4. If bending is not considered, the stress in the wall should follow the

Laplace equation. If bending is considered, there is a boundary layer where the stress

deviates from the Laplace solution but in the far field the stress should be asymptotic

to the Laplace solution, σ = pr
2t

, where p is internal pressure, t is wall thickness, r is

mean radius [83]. The analytical result should be σ = 0.01332×1
2×0.05 = 0.1332N/mm2. In

Figure 4.4, except the boundary effects, the membrane stress in most regions matches

well the Laplace solution.
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CHAPTER 5
POINTWISE IDENTIFICATION METHOD FOR SHELL

STRUCTURES

This chapter introduce the pointwise identification method for shell structures

and conduct a numerical verification for the method.

5.1 Pointwise identification method for shell structure

The general procedure of PWIM is shown in Figure 5.1.

Different with membrane structure, shell structures include bending. We have

already shown that, larger bending stress will compromise the inverse stress insen-

sitivity to material. So the first thing before applying the pointwise identification

method is to evaluate the bending effects. If the bending stress is much smaller

than the membrane stress, the membrane stress dominate the balance equations, and

the membrane stress static-determinacy is also kept. In this case, constitutive re-

gression in pointwise identification in shell structure can be operated on membrane

strain-stress only.

In the deformed configurations, using (i)σ to represent the model stress in the

i− th configuration, (i)σ can be expressed as a function of the following variables,

(i)σ = σ(µ1, ..., µx, ε). (5.1)

(i)σ̂ represents the “experimental” stress obtained from the inverse shell com-

putation. If we use µ1, ..., µx to represent the elastic parameter in the assumed con-
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Figure 5.1: Flowchart of the pointwise identification procedure for shell structure.
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stitutive equation, the objective function can be described as

Φ =
N∑
i=1

∥∥(i)σ −(i) σ̂
∥∥2
w

=
N∑
i=1

[w((i)σ −(i) σ̂)] · ((i)σ −(i) σ̂), (5.2)

where w is the matrix of weights, defined in § 2.4.3. Φ = Φ(µ1, ..., µx) here is a

function of elastic parameters only.

The regression problem can be described as

minimize Φ(µ1, ..., µx),

subject to [µ1, ..., µx]
T ∈ [L.B.,U.B.]

(5.3)

L.B. and U.B. are the lower and upper boundaries of the variables [µ1, ..., µx]
T .

5.2 Demonstration of the method using an aneurysm model

In this example (CASEI), the specific procedure for shell pointwise identifi-

cation method is described in Figure 5.2. Due to the lack of knowledge about the

wall thickness, We set the cerebral aneurysm has an uniformed thickness as 0.2 mm,

and clamp the edge of arteries. The simulation of this inflation motion is conducted

using the 8-fiber Holzapfel shell finite element in FEAP, introduced in last chapter.

In this section, the application of theory discussed in Chapter § (2.4) will

be described. The cerebral aneurysm discussed in this chapter is constructed from

CT images and treated as initial configuration. In this calculation, we set eleven

pressurized states from 50 to 100 mmHg with the 5 mmHg increasement. Each

deformed configuration have a set of strain and inverse stress correspondingly.
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Figure 5.2: Flowchart of the numerical verification.

5.2.1 Material heterogeneity

To simulate the heterogeneity in realistic cerebral aneurysm, the stiffness pa-

rameters are assumed to decrease linearly with respect to the height of the sac region,

while keeping the partial artery’s property as same. We set a height value Zset, if the

heights from artery fundus are over Zset, the stiffness parameter will decrease linearly,

the areas below Zset will have the same artery stiffness. so the stiffness parameters

can be get by

Ei =

{
Eartery
i − Earteryi −Edomei

Zdome−Zartery × (Z − Zartery), Z > Zset
Eartery
i , Z 6 Zset

, i = 1, 2. (5.4)

In this equation, Z is the “Z” coordinate of any Gauss point on the sac, Zartery

and Zdome are the coordinates at the artery and dome regions, respectively. Eartery
i
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(a) E1(N/mm) (b) E2(N/mm)

Figure 5.3: Assumed stiffness parameter distribution: (a) E1; (b) E2.

and Edome
i are the stiffness parameters at the artery and dome regions, respectively.

In this model we set,

Eartery
1 = 1.3N/mm, Edome

1 = 0.4N/mm,

Eartery
2 = 1N/mm, Edome

2 = 0.3N/mm,

(5.5)

The value of the parameter a is uniformly set to be 20. The distribution of the

realistic parameters E1 and E1 showed in Figure 5.3. Forward deformations used to

drive the inverse analyses are generated from this heterogeneous model.

5.2.2 Strain field

For each state, the strain can be computed through finite element interpola-

tion as described in § 2.4. The surface inside an element is parameterized by the

finite element natural coordinates. The base vector in the deformed and reference
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configuration can be obtained through the following equations

aα =
∂x

∂ξα
=

Nel∑
I=1

∂ΦI

∂ξα
xI , Aα =

∂X

∂ξα
=

Nel∑
I=1

∂ΦI

∂ξα
XI , (α, β = 1, 2), (5.6)

where Nel is the total nodes on each element, ΦI are the element interpolation func-

tions.

The square of the stretch of an line element is

λ2I =
nI · nI
NI ·NI

. (5.7)

In convected coordinate system, the i− th fiber stretch can be written as

λI =

√
Nα
I aαβN

β
I

N δ
IAδγN

γ
I

, (5.8)

where aαβ = aα · aβ and Aαβ = Aα ·Aβ. The reference fiber directions NI is known

and can presented as NI = Nα
I Aα, where NI are the components relative to the local

surface bases. Because the fiber direction in the current configuration is defined as

nI = FNI , in the convected coordinate system, nI can be written as

nI = Nα
I aα, (5.9)

where Nα
I is same. So fiber direction in all configurations can be determined, as soon

as components relative to the local surface basis is known.

Figure 5.4(a) and Figure 5.4(b) show the distribution of the first and sec-

ond principal stretches, respectively, at the deformed configuration under the highest

pressure 100 mmHg. The largest principal surface stretch is λ = 1.06. In fact, the

stretch of the wall in cerebral aneurysm is around 2% ∼ 5%. From the distribution of
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(a) λ1 (b) λ2

Figure 5.4: Distribution of the first and second principal stretches at p = 100 mmHg

pressure: (a) λ2; (b) λ1.

(a) pm1(N/mm
2) (b) pm2(N/mm

2)

Figure 5.5: Distribution of the first and second principal stresses at p = 100 mmHg

pressure: (a) pm1(N/mm
2); (b) pm2(N/mm

2).
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principal stretches, we can find that the principal stretches in most regions are also

in that range.

For comparison, correspondingly, we also show the first and second principal

stress distribution, respectively, in Figure 5.5(a) and Figure 5.5(b). The regions have

the higher principal stretches, also present the higher principal stresses.

5.2.3 Stress field

Each inflated state is followed by an inverse stress computation, which takes

the deformed configuration as input to calculate the wall stress distribution. This

generates the Cauchy stress history at each Gauss point in the structure. This stress

will be used in the constitutive regression as the “experimental” stress.

In inverse stress computation, we also use the 8-fiber Holzapfel model with the

assumed stiffness parameters. The strain energy function also takes the same form

as forward 8-fiber Holzapfel shell model, written as

ψm =
8∑
I=1

kI
8a

(exp[a(λ2I − 1)2]− 1),

λ2I = C ·NI ⊗NI , (I = 1, 2, ..., 8).

(5.10)

The basic formulation of inverse 8-fiber Holzapfel shell model is discussed in §4.2.2.

In the inverse stress analysis, we set the effective stiffness parameters E1, E2

and a as follows

E1 = 8.2N/mm, E2 = 5.2N/mm, a = 20. (5.11)

The stress distribution will be showed in verification section, which also in-

cludes the stress insensitivity to material models.
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Here one thing should be pointed out. In the inverse method, the tress resul-

tant t on each Gauss point is computed in a local orthonormal coordinate system gα,

so the convariant metric tensor is gαβ = gα · gβ = δαβ, and the contravariant metric

tensor is gαβ = δαβ. Three types of base vectors will be used in PWIM, shown in

Table 5.1.

Table 5.1: Convected and non-convected base vectors in three configurations.

Referential Convected Non-convected

Configuration Undeformed Deformed(Forward) Deformed(Inverse)

Base vectors Gα gα gα

Metric Tensor Gαβ = δαβ gαβ gαβ = δαβ

Referential Convected Non-convected

Configuration Undeformed Deformed(Forward) Deformed(Inverse)

Base vectors Aα aα aα

Metric Tensor Aαβ = δαβ aαβ aαβ = δαβ

The stress resultant tensor t remains the same whether the bases are convected
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or non-convected, so we get

t = tαβgα ⊗ gβ = t
αβ

gα ⊗ gβ, (5.12)

where tαβ and t
αβ

are the stress tensor components under the convected base vectors

gα and the non-convected base vectors gα, respectively. Contacting with gα ⊗ gβ on

both sides of (5.13), we can get

tαβ = (gα · gδ)t
δγ

(gβ · gγ). (5.13)

This is the transformation between the physical and the convected stress components.

5.2.4 Constitutive regression

In this numerical verification example, using (i)t to represent the model stress

resultant in the i−th configuration, (i)t can be expressed as a function of the following

variables,

(i)t = t(E1, E2, a, a,A). (5.14)

(i)t̂ represents the “experimental” stress resultant obtained from the inverse

shell computation. In this work, the object function is written as [99],

Φ =
N∑
i=1

w1(
(i)t11 −(i) t̂11)2 + w2(

(i)t22 −(i) t̂22)2 + w3(
(i)t12 −(i) t̂12)2 (5.15)

In this object function, w1, w2, w3 are weight parameters, and are chosen according to

the ratios among the inverse (experimental) stress components (i.e. t̂11

t̂22
), to consider

the influence of all the stress component on the objective function value and scale

them to a similar order [99].
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The regression problem can be described as

minimize Φ(E1, E2, a),

subject to [E1, E2, a]T ∈ [L.B.,U.B.]

(5.16)

L.B. and U.B. are the lower and upper boundaries of the variables [E1, E2, a]T .

In this optimization algorithm, the analytical gradients of the objective func-

tion with respect to the regression variables are required. The convected components

of the stress tensor are already derived as

t̃αβ = J−1
8∑
I=1

kI
2

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)(N p
I ApqN

q
I )−1N α

I N β
I , (5.17)

where J−1 = 1/detF. The gradient for SNOPT in this work is defined as gobj(pi) =

∂tαβ

∂pi
, (pi = E1, E2, a). The stress gradients can be presented as

gobj(E1) =
∂tαβ

∂E1

=
∂tαβ

∂kI

∂kI
∂E1

=

J−1

24
(

4∑
I=1

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)N α
I N β

I (20− 9
√

2 + 3(−2 +
√

2)I)

+
9∑
I=5

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)N α
I N β

I (−40 + 21
√

2− 3(−2 +
√

2)I)).

(5.18)

gobj(E2) can be computed using same way

gobj(E2) =
∂tαβ

∂E2

=
∂tαβ

∂kI

∂kI
∂E2

=

J−1

24
(

4∑
I=1

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)N α
I N β

I (−16 + 9
√

2− 3(−2 +
√

2)I)

+
9∑
I=5

(exp[a(λ2I − 1)2]− 1)(λ2I − 1)N α
I N β

I (44− 21
√

2 + 3(−2 +
√

2)I)).

(5.19)

gobj(a) is given as follow

gobj(a) =
∂tαβ

∂a
= J−1

8∑
I=1

kI
2

(exp[a(λ2I − 1)2])(λ2I − 1)3N α
I N β

I , (5.20)
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Figure 5.6: Percentage difference in von Mises stress between baseline and stiffer

8-fiber Holzapfel material models.

5.2.5 Stress insensitivity of inverse stress

Since the fundamental premise in the method design is that the inversely

computed stress in insensitive to material model or parameters used to perform the

analysis, it is important to verify the stress sensitivity before moving further in the

analysis. In order to verify the stress insensitivity to material model, we also choose

two sets of material parameters for 8-fiber Holzapfel material model: the baseline and

the stiffer material models.

For the 8-fiber Holzapfel material model, we set baseline parameters and ele-

vated stiffness parameters, respectively,

Baseline parameters : E1 = 8.2N/mm, E2 = 5.2N/mm, a = 20;

Elevated stiffness parameters : E1 = 82N/mm, E2 = 52N/mm, a = 36.

(5.21)

We compare the stress differences differ =
|σbaseline−σstiffer|

|σbasline|
×100%. Figure 5.6
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shows the stress differences between the baseline and stiffer 8-fiber Holzapfel material

models. From Figure 5.6, we can find that the von Mises stresses differences computed

by using baseline and stiffer 8-fiber Holzapfel material model are less than 5% for the

whole model; and except the artery boundaries, the stress differences in the aneurysm

regions are less than 3%, most part even lower than 1%.From this comparison, we

can conclude that, the inverse stress depends insensitively on the material models.

This is important for pointwise identification method. Because of lack of information,

it’s unavoidable to use assumed model or parameters to compute the “experimental”

stress. Results here indicates that, although different kinds of material models we use

in the inverse stress computation, the predicted stress distributions stay close.

From the stress comparison figure, we can find that the largest differences

happen near the artery boundary, and in the sac the stress differences are quite

small. This can be understood as the boundary effects. So in the identification step,

we only computed the sac areas and avoid the boundary region.

The bending factor α (defined as α = bendingstress
membranestress×thickness) in inverse method

with baseline model. From Figure 5.7, we can find that the maximum bending factor

is less than 0.05; in most regions, the bending factors are less than 0.01. In this case,

in which the membrane stress is much larger than bending, we can omit the bending

effects and use the membrane results to carry out the constitutive regression.
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Figure 5.7: Distribution of bending factor α.

5.2.6 Distribution of the identified parameters

Parameters regression is conducted at each Gauss point. The figures here are

the results we further project to corresponding nodes. Figure 5.8 shows the distribu-

tion of identified stiffness parameters E1, E2 and a. To evaluate the the accurate of

the identified stiffness parameters, the relative error between the identified and as-

sumed stiffness parameters are also calculated. We define error = |p−p̂|
|p̂| × 100%, (p =

E1, E2, a), and p and p̂ indicate the identified and assumed values, respectively. In

Figure 5.8, we show the distribution of the identification error for E1, E2, a.

To quantify the identification error, the maximums, minimum and mean rela-

tive errors are calculated in Table 5.2.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 5.8: PWIM result for CASE I.
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Table 5.2: Maximum, minimum and mean errors of the identified parameters in the

identification region.

Error % E1 E2 a
Maximum (%) 10.11 8.56 8.68
Minimum (%) 0.001 0.003 0.001

Mean (%) 4.16 3.85 2.85

5.2.7 Forward predictability validation

We further assess the accuracy of the predictability of the identified parame-

ters using a forward analysis. We choose a new pressure state (120 mmHg), which is

not used in the regression, to conduct the forward analysis with both identified and

assumed material parameters. For the artery boundary regions, which are excluded in

the identification, we just use the assumed material parameters. Identified parameters

are applied to the rest of the aneurysm wall. Figure 5.9 presents the distribution of

mid-surface displacement differences between two sets of material parameters’ analy-

sis. The displacement difference here is defined as ‖u−û‖‖û‖ × 100%, where u and û are

vectors and represent the displacement computed by using identified and assumed

parameters, respectively. From Figure 5.9 we can find that, the maximum differences

is 0.8%, and in most regions, 0.2% 0.4%.
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Figure 5.9: Distribution of displacement differences between two sets of material

parameters’ analysis (%).

5.3 Discussion

In this chapter, we used the cerebral aneurysm as an numerical experiments

to conduct the pointwise identification method. The aneurysm wall is described as

elastic shell and thus, concave surfaces are permitted. This eliminates the limitation

of membrane structure and allows for realistic aneurysms to be considered.

In this chapter we first show that inverse stresses stay close between isotropic

and anisotropic material models. We testify that the inverse stress is material insen-

sitive, which can ensure that the inversely computed stress distribution be a good

approximation to the actual stress. By using PWIM, we obtain the identified mate-

rial stiffness parameters, whose errors compared to the assumed parameters are less

than 7%. The assumed heterogeneous parameters distribution are also recovered. In

the optimization procedure, sometimes, different combination of material parameters
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can give equally satisfactory fit. Therefore , it’s possible that we obtain a set of pa-

rameters that are not the true minimizer. To evaluate the effective of the identified

parameters, one of the possible way is to test the predictability of the identified pa-

rameters. In our analysis, the displacement computed by forward analysis with both

sets of material parameter stay close; the errors are less than 0.4%.
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CHAPTER 6
APPLICABILITY OF PWIM IN CEREBRAL ANEURYSMS

6.1 The applicability study

6.1.1 Method

The shell PWIM is applied to a group of selected typical realistic cerebral

aneurysms. There are many kinds of geometrical structures in realistic cerebral

aneurysms, and PWIM may not apply to some types and thus it is important to eval-

uate the method against a wide range of geometric features. Five other representative

aneurysms are selected in the study. They include a saddle-like aneurysm, saccular

geometries with small blebs, large concavity, saccular with daughter aneurysms. The

same shell PWIM method is applied on these cerebral aneurysm models, including

the boundary condition, fiber orientation, deformed states, pressure, etc.

Figure 6.1 shows the von Mises stresses and bending factor (defined as α =

bendingstress
membranestress×shellthickness) in five cerebral aneurysms. For all cases, the bending stress

is much smaller than the membrane stress, in most regions the bending factors are

smaller than 0.02. The smaller bending factors means the membrane stress plays the

domination role, and thus PWIM can be applied.

The analysis follows the same procedure described in the Chapter §5. The

stiffness parameters E1 and E2 are also assumed as to decrease with respect to the

height from the basal plane. Four different types of heterogeneities are assumed,

and the property distributions. The assumed heterogeneities can be found in Figure
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(a) Case II, stress (b) Case III, stress (c) Case IV, stress

(d) Case II, α (e) Case III, α (f) Case IV, α

(g) Case V, stress (h) Case VI, stress

(i) Case V, α (j) Case VI, α

Figure 6.1: Von Mises stress (N/mm2) and bending factors.



www.manaraa.com

106

5.8-Figure 6.6. The material constant a is kept homogeneous and is set to 20.

6.1.2 Pointwise identification results

Figure 5.8-Figure 6.6 show the distributions of identification results, including

the identification errors, for five cerebral aneurysms. Errors are defined as error =

|p−p̂|
|p̂| ×100%, and p and p̂ indicate the identified and assumed values, respectively. For

II, III, (Figure 6.2-Figure 6.3), the continuously linear distributions are recovered,

and the relative identification error is in an acceptable range. Take CASE II as

example, the maximum identification error is less than 12%, 13%, 11% for E1, E2 and

a, respectively; the mean identification error is 3.76%, 3.96%, 3.27% for E1, E2 and a,

respectively.

Other types of distributions are considered in CASE IV, V and VI. The dis-

tribution of identified material stiffness in all cases also recover the assigned distribu-

tions.

The maximum, minimum and mean identification errors for five cases are

shown in Table 6.1. In Table 6.1, we can find that in whole five cerebral aneurysm

cases, the mean identification errors are less than 5%, most of them are around 3%;

the maximum identification errors are less than 13.5%.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.2: PWIM result for CASE II. (The maximum strain is 0.06).
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.3: PWIM result for CASE III. (The maximum strain is 0.06).
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.4: PWIM result for CASE IV. (The maximum strain is 0.09).
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.5: PWIM result for CASE V. (The maximum strain is 0.05).
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.6: PWIM result for CASE VI. (The maximum strain is 0.07).
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Table 6.1: Statistics of the identification errors (%) of five cases.

Minimum Maximum Mean
CASE E1 E2 a E1 E2 a E1 E2 a
II 0.004 0.003 0.001 12.09 13.40 11.39 3.76 3.96 3.27
III 0.005 0.001 0.43 10.73 9.50 6.56 2.7 3.23 3.26
IV 0.001 0.004 0.01 9.71 10.19 7.44 2.13 3.23 3.17
V 0.002 0.001 0.02 9.51 11.69 6.01 2.96 3.10 2.36
VI 0.003 0.002 0.01 9.01 7.95 6.81 2.35 2.21 3.30

6.2 Unknown fiber direction

6.2.1 Identification results

The material model used in the study, presented in Section 6.1.2, is an or-

thotropic material for which the symmetric axes are specified by two vectors N1 and

N5 called the principal fiber directions. In the previous section, we assume that the

fiber directions, are known during parameter identification. Given that in reality the

fiber directions (in fact, the symmetry type as well) are not known, we include the

fiber orientation as a regression variable in this section.

In the forward analyses, the fiber directions are set up as follows. The first

principal fiber (k1) direction N1 in the reference configuration is assumed to be parallel

to the basal (x-y) plane, and tangent to the aneurysm surface at each point. The

second principal fiber (k5) direction N5 is perpendicular to N1 and also tangent to

the surface. Thus, the fiber directions are uniquely determined at every Gauss point.

The fiber N1 ( η′1 in Figure 6.7) is parameterized by the angle θ that it makes to a

local basis η1 which is tangent to the surface. The local basis is generated from the
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Figure 6.7: Schematic illustration of uniformly distributed collagen fibers (Repro-

duced from [42]).

finite element natural coordinates and every Gauss point, and is recorded. The angle

is defined by

θ = arccos
N1

1

‖N1‖
. (6.1)

The angles of other fibers can calculated from θI = θ + I−1
8
π, I = 1, 2, ..., 8.

In the inverse stress computation, we use the assigned fiber direction. It would

be more realistic of if a different fiber assumptions were employed; however, given the

premise that the inverse stress solution is insensitive material model, the assignment

of symmetry does not matter much in this step.

In the regression, the angle θ is assumed unknown and is estimated from the

strain-stress data regression, along with other parameters. In this case, the objective
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function in Eq. (5.2) can be written as Φ = Φ(µ1, ..., µx, θ), which not only includes

the material stiffness parameters and also the angle that defines the first principal

fiber direction.

We carry out the identification for CASE III and CASE V. The identified stiff-

ness parameter and identification errors of CASE III are shown in Figure 6.8. From

the distributions of identified stiffness parameters, we can find that the prescribed

linear distribution is recovered. The the mean identification error is 9.5%, 6.4%, 5.9%

for E1, E2 and a, respectively; the maximum identification error is less than 30.5%,

26.3%, 11.5% for E1, E2 and a, respectively. The maximum identification occurs only

on boundary and some scatter spots, and in most regions the identification errors

are relative small. Comparing the case of known fiber direction (Figure 6.3), the

maximum and mean errors are elevated. For CASE V, the identification results are

shown in Figure 6.9, the mean identification error is 6.4%, 5.1%, 3.9% for E1, E2 and

a, respectively; the maximum identification error is 18.8%, 13.6%, 10% for E1, E2

and a, respectively. Again, the identification errors are elevated by introducing fiber

direction into constitutive regression for both cases. It is anticipated because with

more parameters in regression, the accuracy of identification is compromised.

Figure 6.10 and Figure 6.10 show the fiber directions on Gaussian points for

CASE III and CASE V, respectively. The red dots represent the Gaussian points;

the blue line and red line represent the assumed fiber directions and identified fiber

directions, respectively. In most regions of both comparison figures, the identified

fiber directions agree very well the assume ones (e.g. the regions of blue line and red
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lines overlap).

6.2.2 Predictability of the identified parameters

The predictability of the identified parameters are assessed using forward anal-

ysis under 120 mmHg pressure. We run a forward analysis using the identified pa-

rameters and fiber angle, and compare the nodal displacement from another analysis

using the assumed parameter and fiber orientation. Figure 6.12 and Figure 6.13

show percentage differences in nodal displacements for CASE III and CASE V, re-

spectively. The percentage difference is defined as ‖u−û‖‖û‖ × 100%, where u and û are

vectors and represent the displacement computed by using identified and assumed pa-

rameters, respectively. The difference is computed at every nodes, and interpolated

to generate the contour plots. In CASE III, the maximum and mean displacement

errors are 1.75% and 0.52%, respectively. In overall, the difference is very small. The

“high” error only occurs in an isolated spot; the displacement error in most surface

regions are less than 1%. In CASE V, the maximum and mean displacement errors

are 1.96% and 0.36%, respectively. The maximum displacement error occurs on two

scattered spots near the boundary, the displacement error in most regions are less

than 0.6%. The identified parameters, despite a maximum of 30% of local difference

to the assigned parameters, appears to yield to good predictability.

6.3 Influence of noise in motion data

In the application of PWIM in the living tissues, the deformed configurations

are usually segmented from the medical images. It is unavoidable that the deformed
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.8: PWIM result for CASE III without knowing the first fiber direction.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.9: PWIM result for CASE V without knowing the first fiber direction.
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Figure 6.10: Fiber direction (N1) on Gauss points (red dots), CASE III. Red line:

identified fiber direction; Blue line: assumed fiber direction.
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Figure 6.11: Fiber direction (N1) on Gauss points (red dots), CASE V. Red line:

identified fiber direction; Blue line: assumed fiber direction.
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Figure 6.12: Percentage difference in nodal displacement, CASE III.

Figure 6.13: Percentage difference in nodal displacement, CASE V.
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Figure 6.14: Method to evaluate the stability of PWIM.

configurations contain geometric errors resulting from both the image and segmenta-

tion/reconstruction. To further evaluate the method, it is imperative to investigate

the robustness of the method under noise. In this section, numerical noise will be

added to the nodal positions prior to the inverse analysis.

6.3.1 Method

Random perturbations to the nodal positions in deformed configurations will

be added to simulate the errors generated during medical image reconstruction. The

perturbed configurations are used in the inverse phase of analysis (both stress/strain

analysis and regression). The accuracy of identified parameters are examined under

different noise levels.
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The procedure is showed in Figure 6.14. Random vectors ϑ = (δx, δy, δz) will

be generate through MATLAB, and the norm of vectors, ∆ (defined as ∆ = ‖ϑ‖)

will be scaled down to a small magnitude (e.g. 1% or 2%). On each deformed config-

uration, the nodal displacements u are perturbed to u′ = u +ϑ · ‖u‖, The perturbed

displacements are used in the inverse stress analysis and strain computation. Material

parameters are identified from these perturbed stress and strain data.

6.3.2 Identification results

We use the CASE II, discussed in last section, as a test case to investigate

the capability of shell PWIM when the noises exist in displacement data. We keep

all the information (e.g. assumed material heterogeneity, boundary condition, fiber

orientation and deformed states number) the same as we used in Chapter §6.1.2,

except that the geometry of each deformed configuration is polluted with noise.

Figure 6.15 and Figure 6.16 show the identification result when ∆ is 1% and

2%, respectively. From Figure 6.15 and Figure 6.16, we can find that the mate-

rial heterogeneity are recovered in most regions. With 1% perturbation error, the

mean identification error is 6.38%, 4.37%, 7.15% for E1, E2 and a, respectively; the

maximum identification error is less than 15.27%, 17.9%, 15.66% for E1, E2 and a, re-

spectively. In Figure 6.16, when the perturbation error is 2%, the mean identification

error is 13.9%, 14.1%, 8.6% for E1, E2 and a, respectively; the maximum identification

error is less than 37.8%, 71%, 66.1% for E1, E2 and a, respectively. It is evident the

higher the noise level, the lower the accuracy.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.15: Identification result for CASE II under 1% of perturbation.



www.manaraa.com

124

(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.16: Identification result for CASE II under 2% of perturbation.
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Figure 6.17: Percentage difference in displacement under 1% perturbation.

6.3.3 Predictability of the identified parameters

Since there is a moderately large error in the identified parameters, it is of

interest to investigate how the predictability of the parameters is affected. We con-

duct the forward analysis at 120 mm Hg pressure (not used in regression) with both

identified and assumed material parameters. Figure 6.17 and Figure 6.18 show the

percentage displacement differences when the perturbation errors are 1% and 2%,

respectively. In Figure 6.17, the displacement differences are less than 1% in most

regions; the maximum and mean displacement errors are 2.3% and 0.62%, respec-

tively. Clearly, the displacement results are accurate. For 2% perturbation, shown in

Figure 6.18, in most regions, the displacement differences are significantly elevated.

The maximum and mean displacement errors are 11.29% and 2.09%, respectively.

Although the mean error remains reasonably small, the maximum error of more than

10% (in displacement) clearly indicates a significant loss of accuracy in the identifi-

cation results.
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Figure 6.18: Percentage difference in displacement under 2% perturbation.

(a) Strain error (%) (b) Stress error (%)

Figure 6.19: Errors in strain and stress data.

To further understand the identification accuracy, for 1% perturbation exam-

ple, the strain and stress error caused by the noise in displacement data are shown

in Figure 6.19. In strain data, the maximum error and mean error is 5.1% and 1.3%.

respectively. In stress data, the maximum error and mean error is 18.1% and 2.1%.

respectively.
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6.4 Discussion

In this chapter, we use five more representative realistic cerebral aneurysms

to study the applicability of PWIM in cerebral aneurysms of realistic geometries.

By modeling aneurysms as thin shell structures, the PWIM can now be applied to

realistic cerebral aneurysms, without the limitation of convex geometry. For all five

cases, the shell PWIM provides good identification results. The four types of material

heterogeneities we assumed are all successfully recovered.

Although, there have been researchers studied the characterization of the het-

erogenous anisotropic material in the cerebral aneurysm geometries (Kroon et al.

[41]). Their method is used on an idelaize sphere, not realistic cerebral aneusysm.

Balocco et al. [4] present the identification of heterogenous material properties in re-

alistic cerebral aneurysm. Their studies still focus on the isotropic material, and the

material heterogeneity only contains two sets of material parameters. This work is

arguably the most complicated of studies of this type. We considered heterogeneous

distribution of anisotropic material properties in realistic cerebral aneurysm. The

strain/pressure range used in this work is close to physiological values. In addition,

there’s only 11 states in the regression.

We investigate the predictability of shell PWIM when the fiber direction is

unknown. By introducing the fiber direction into constitutive regression, the errors

of identification result are elevated. However, even at the elevated error the identi-

fied parameters can still predict the forward motion with a high accuracy (less than

1.8%). This indicates the fiber direction can be identified using shell PWIM and
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the identification results have the robustness to provide the stable forward analysis

results.

Numerical noise is shown to have a significant influence on the identification

method. From the identification results under 1% perturbation and 2% perturbation,

we can find that the higher the noise level, the lower the accuracy. Nevertheless, the

identified parameters at least at 1% perturbation can still yield a reasonable forward

analysis results. This is understandable, the displacement calculated through all the

material parameters; and different combinations of material parameters can provide

the similar stress response, leading to similar displacement results.

Some limitations of the study remain. The first limitation in this study is the

assumption on thickness. The uniform thickness we use in this work is an assumption

base on the reported values. Although the wall stress resultant is primarily deter-

mined by the deformed configuration and corresponding pressure. The wall thickness

still affect the computation of the stress couple. If the bending factors in a shell

structure are too large, the PWIM may can not be applied. So far, there is no avail-

able measurement which can provide the accurate information of the wall thickness.

Hopefully with the improvement of imaging technology, we can obtain the real wall

thickness and accurately assess the bending stress. Another limitation of this work is

the assumption of fiber direction. The material orthotropic and first principal fiber

direction are all assumed base on the report [40, 42]. The actual fiber orientation

could be more complicated. It should be worth to mention that the assumption of

fiber direction does not affect the method. In this work, we have demonstrated that
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the identification accuracy will decrease if the fiber direction is assumed as unknown

parameter in the constitutive regression. If the fiber structure features can be mea-

sured, e.g. [22, 60], the accuracy of the identification results will be improved.

The limitation of this method is that the shell PWIM can only be applied to

shin shell structures. So far, we use the broadly cases to evaluate the “thinness”, yet

we didn’t provide a criteria for “thinness”.

The ultimate extension of this work is to apply the shell PWIM in the living

tissue (e.g. cerebral aneurysms described in this work). The deformed configuration

usually will be extracted from medical images during the wall motion. In order to

capture the accurate inflated configurations, the advanced medical resolution and

registration strategy are higher required.
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CHAPTER 7
CONCLUSIONS

7.1 Summary

This thesis is motivated by (1) the demand of identifying the material proper-

ties in realistic soft-tissues and (2) the need to extend PWIM to realistic geometries.

The shell PWIM developed in this work is shown to be a viable method for at least

a family of thin membranes structures, the ones that are sac-like but not neces-

sary convex. We investigate the applicability of shell PWIM with different types of

cerebral aneurysms and showed that the method can effectively back out nonlinear

heterogeneous properties. The major contributions of this work are as follows.

• Investigated the stress insensitivity to material models in thin shell structures.

We have shown that the inverse stress in thin shell structure is, to a large

extent, insensitive to material properties (constitutive model and material pa-

rameters). This is important for our development, as static determinacy is the

premise of PWIM. Surface topologies (open versus closed, number of orifices)

and wall thickness have a strong influence on the stress property. It is found

that the cerebral aneurysms, which are of saccular geometries, are more suitable

to PWIM.

• Developed the finite element formulation of forward and inverse shell methods

for 8-fiber Holzpfel material model which is specifically proposed for cerebral

aneurysms tissues. This material model is used in aneurysms studies.
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• Extended the pointwise identification method to thin shell structures. The shell

PWIM resolves the limitation on convex geometry of the original PWIM. The

shell PWIM can be utilized to identify the anisotropic material properties in a

much broader family of thin soft tissue structures (in this work, the major ap-

plications are on cerebral aneurysms). Because of the constitutive regression is

conducted pointwisely, the shell PWIM can identify the arbitrary heterogeneous

property distributions. In this work, we utilize four types of material hetero-

geneities, and all of them are accurately recovered. The identification can also

include fiber directions and thus, anisotropic properties can be handled without

modification to the method.

• Evaluated the applicability of the shell PWIM in six cerebral aneurysm of differ-

ent surface geometries. The identification errors for the material parameters of

all cases stay in an acceptable range (the means of identification errors are less

than 6%). The selected aneurysms models all have saddle or concave surface

features, and some with relative large daughter aneurysms, forming a good rep-

resentative group for non-convex aneurysms. This population study indicates

that the method can be applied to cerebral aneurysms (assuming, of course, the

availability of segmented dynamic image data).

• Investigated numerically the influence of noise. Two ways are used to evaluate

the accuracy of identification. One is the identification error; the other one

is the predictability of the identified parameters. Although the identification

results are sensitive to the noise, the predictability of the model remains to be
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resilient.

7.2 Outlook

Although the shell PWIM developed in this work presents significant improve-

ment in characterizing the material properties in the living organs, there are a number

of limitations that call for future improvement and development.

• The requirement for high resolution dynamic image data. The method requires

high resolution images which could provide accurate information of the dy-

namic geometry. In fact, for cerebral aneurysms, the required precision exceeds

the resolution of current image modalities. There are active image registration

studies in tracking the deformation for e.g. lung and heart from medical images

[94, 95, 93, 55, 1]. However, the deformation tracking in cerebral aneurysms still

faces challenges due to the aneurysms size and the range of deformation. Also,

the method by design can predict only lumped stiffness parameters (elasticity

parameters times the wall thickness). If the 3D properties are to be determined,

the wall thickness is required. Current CT and MRI imaging can not accurately

resolve the wall thickness for cerebral aneurysms. Nevertheless, if the wall thick-

ness can be measured from point to point, the intrinsic 3-D stiffness parameters

can be easily backed out.

• Another challenge relates to the anisotropic material information in cerebral

aneurysm, e.g. the fibers’ orientations and fibers’ stiffness. In this work, type

of the symmetry is assumed, and therefore we need only to characterize the
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symmetry axis which requires only one parameter. In reality, the symmetry

type needs to the identified from the stress-strain characteristics. Due to the

local nature of the regression problem, if we can obtain symmetry information

(e.g., fiber orientation) through other means, we can easily incorporate the

information into the regression problem to improve the method.

• The last but not the least we need to improve the optimization algorithm. The

identification results are influenced by the objective function, initial value and

upper/lower boundary. We believe that there are rooms we can work to improve

the identification accuracy. For example, we can use more powerful optimization

program, or do more improvements on SNOPT to refine the formulation, such

as adjusting the objective function, etc. It needs lots practices to set up and

run the regression problem.
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